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1 Background

Variational inference is a very successful approach to
Bayesian statistics, which frames posterior inference in terms
of an optimisation problem. The idea is to approximate
the posterior probability p(z | x) using a family of “simpler”
densities qθ(z) over the latent variables z, parameterised by
θ. The optimisation problem is then to find the parameter
θ∗ such that qθ∗(z) is “closest” to the true posterior p(z | x).

A reduction of variance, which is essential in practice, can
often be achieved by a reparameterisation of the distribution
qθ via a diffeomorphic transformation φθ of a base (or noise)
distribution q, which is independent of the parameters.

Abstractly, we seek to minimise expectations of the form
Es∼q[f(φθ(s))], where f is expressed in a programming lan-
guage. In practice, gradient based algorithms are used to
address the optimisation problem for which it is essential to
estimate gradients of the expectation unbiasedly. Unfortu-
nately, [8] have demonstrated that the gradient estimation
may be biased for non-differentiable f readily expressible
in programming languages, which can result in incorrect
results.

Contributions. We study the continuous but possibly
non-differentiable setting: we provide categorical models,
prove unbiasedness of the reparameterisation gradient es-
timator and demonstrate how to establish continuity in
a language with conditionals compositionally. Abstractly,
this provides a foundation for fast yet correct inference for
non-differentiable continuous models.

Example 1. We model a temperature regulation system
using a probabilistic program. Without intervention, the
temperature fluctuates randomly. If the temperature drops
below a threshold of 18 degrees centigrade the heating is
engaged and the power is proportional to the deviation from
the threshold. Time is discretised and after one time unit
we measure a temperature of 21 degrees. We are interested
in the distribution of the original temperature.

let t0 = sample normal (20 ,σ0 )
mu = t0 + i f t0 < 18 then c ∗ (18− t0 )

else 0
observe 21 from normal (mu, σ )

in t0

(σ0, σ, c > 0 are constants.) Note that the joint density is
not differentiable (yet continuous) at t0 = 18.

2 An Idealised Programming Language

As our starting point we take a variant of the simply-typed
lambda calculus with reals, primitive operations, condition-
als, and statistical constructs for sampling and observations:

M ::= x | r | f | λx.M |MM

| sample D(M, . . . ,M)

| observeM fromD(M, . . . ,M)

| ifM < 0 thenM elseM

| sifM < 0 thenM elseM

where r ∈ R, f : R` → R and D is a continuous proba-
bility distribution (potentially with parameters). For in-
stance samples from a normal distribution with mean 20
and standard deviation σ0 ∈ R>0 (as in the example) can
be obtained by sample N (20, σ0). Our language has two
kinds of conditionals: if with a standard semantics and
a smooth approximation thereof, sif . The latter recovers
expressivity since we need to restrict the use of standard
(potentially discontinuous) conditionals below to guarantee
unbiasedness.
Motivated by variational inference, we are primarily in-

terested in joint densities. Thus, we endow our language
with a denotational weight semantics1 J(−)K, which is in
the spirit of the operational versions in [1, 10]. At ground
type, it assigns a weight to each valuation of the free vari-
ables and the trace of samples. Whilst quasi-Borel spaces
[4] are a well-established categorical model for probabilistic
programs, we need to capture further properties than “just”
measurability.

3 A General Categorical Model

[7] use piecewise analytic functions under analytic partitions
(PAPs) as a natural semantic framework for programs with
branching. Recall that a function f is PAP if it has the
form f(x) =

∑`
i=1[x ∈ Ui] · fi(x), where U1, . . . , U` ⊆ Rn

is a partition of analytic sets and each fi is an analytic
function2. [9] extend it to higher-order recursive programs.
We propose a general categorical model generalising the

cartesian closed category of Frölicher spaces [3, 13], replacing
smoothness with arbitrary sets of functions R→ R satisfying
mild closure properties.
We wish to interpret smoothed conditionals sif L <

0 thenM elseN as smoothly weighted convex combinations
of the branches: (σ ◦ (−JLK)) · JMK + (σ ◦ JLK) · JNK, where
σ is a logistic sigmoid. For this to be well-defined (in partic-
ular for higher-order branches) we show how to enrich the
category over vector spaces to ensure that if α : X → R and
f : X → Y are morphisms, so is α · f (defined pointwise).
As a special case we obtain a cartesian closed category

VectPAP to interpret our language (including smoothed
conditionals) in, and ground terms denote PAP functions
(as long as the primitives are PAPs as well).

4 Unbiasedness for Continuous PAPs

Now, we return to investigating continuity. For a contin-
uous PAP (CPAP) the piecewise definitions agree on the
boundaries. More formally this means it has the above form
and for each x ∈ Ui ∩ Uj , fi(x) = fj(x). CPAPs have the
great advantage of avoiding bias:

1E.g. Jsample N ( 20, σ0)+x ·(observe 2 fromN (0, 1))K(x, [s]) =
pdfN (s | 20, σ0) · pdfN (2 | 0, 1)

2Recall that a function f : Rn → R is analytic if it is infinitely
differentiable and its multivariate Taylor expansion at every point
x0 ∈ Rn converges pointwise to f in a neighbourhood of x0. A set
U ⊆ Rn is analytic if it is the finite intersection of sets of the form
f−1(−∞, 0) or f−1[0,∞) for analytic f : Rn → R.
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Theorem 1 (Unbiasedness). If f ◦φθ is a continuous PAP
with partial derivatives which are uniformly dominated by
an integrable function3 then

∇θ Es∼D[f(φθ(s))] = Es∼D[∇θf(φθ(s))]

(Note that f ◦ φθ(−) is a.e. differentiable.) The proof
makes use of the dominated convergence theorem [6, Theo-
rem 6.28] and exploits that due to continuity, branches do
not deviate significantly near boundaries of the piecewise
definition.
Due to our general construction, there is a cartesian

closed category VectCPAP capturing continuity in which
we can interpret the fragment of the language without stan-
dard conditionals (but with smoothed conditionals). The
conditional in the above example can be rephrased via a non-
differentiable primitive as c ·(ReLU (18− t0)). Consequently,
the reparameterisation gradient is unbiased for such terms.
(The uniform domination premise of Theorem 1 can be guar-
anteed by restricting distributions to have densities which
are Schwartz functions [5, 12] and primitive operations to
have partial derivatives bounded by polynomials.)

5 Continuity for Terms with Conditionals

We now turn to the task of establishing continuity via a type
system for the full language language including (standard)
conditionals. In principle, continuity could be added as side
condition of a typing rule for conditionals:

Γ `cont L : R
Γ `cont M : τ Γ `cont N : τ

Γ `cont if L < 0 thenM elseN : τ

∀γ ∈ JΓK. JLK(γ) = 0
→ JMK(γ) = JNK(γ)

However, type checking this is generally not tractable.
Our approach is to restrict the conditionals of the lan-

guage to affine guards, and to use a randomised check for
continuity. Affine guards are beneficial in a twofold respect:
to efficiently sample from the boundary of guards [8] and to
efficiently check their consistency using off-the-shelf linear
arithmetic solvers [2]. This keeps the computational burden
of type checking very low, whilst we can still benefit from
the added expressivity due to conditionals.

In general we restrict conditionals to having affine guards,
to be purely 1st-order and, for the sake of simplicity, to only
use analytic primitives in the branches:

F ::= x | r | f F · · ·F | sif F < 0 thenF elseF

| if aTx + c < 0 thenF elseF

where f : Rn → R is analytic. Conditionals can be nested
and outside of conditionals we may use abstractions, appli-
cations and (non-differentiable) PAP primitives. E.g. we
can rephrase the above example using a rectified linear unit
primitive as the following typable term:

(λf. c · (f (18− t0))) (λx. if x < 0 then 0 elsex)

Randomised Continuity Check

Example 2. Consider if x − y < 0 then f x y else g x y,
where f and g are analytic primitives. For continuity we
need to check that x = y implies f(x, y) = g(x, y). In other
words for U := {(x, y) | x = y} the restriction of f − g
to U must be constant 0. On the other hand, since the
restriction of f − g to U is analytic, either (f − g)|U = 0

3i.e. there exists g : Rn → R such that E[|g(s)|] < ∞ and
∂
∂θi

f(φθ(s)) ≤ g(s) for all θ ∈ Θ and s ∈ Rn.

or (f − g)|U 6= 0 a.e. [11] Therefore, with probability 1,
(f − g)|U = 0 if f(x, x) = g(x, x) for a random x (e.g.
x ∼ N (0, 1)).

In general, continuity of if (aTx + c) < 0 thenF elseG
can be checked in a finitary manner by examining all (finitely
many) branches (or straightline programs) in F and G.

Consistency of Branches

Some pairs of branches may be unnecessary to check (thus
unnecessarily ruling out terms) because of inconsistent
guards:

Example 3. The following term implements max{|x|, 1},
which is continuous in x:

if x+ 1 < 0 then − x else (if x− 1 < 0 then 1 elsex)

By the method presented thus far, for the outer conditional
we need to check compatibilty of −x with x at the boundary
of x + 1 < 0, i.e. x = −1. Obviously, for x = −1, −x 6= x
and the test would fail.

However, continuity is not compromised because the two
branches given by the conditionals x+ 1 < 0 and x+ 1 ≥
0 ∧ x − 1 ≥ 0 do not share boundary points. Phrased
differently, the linear arithmetic constraints x+ 1 ≤ 0 ∧ x+
1 ≥ 0 ∧ x− 1 ≥ 0 (note the non-strict inequality in the first
conjunct) is inconsistent.

To account for this, we collect the guards and only check
pairs of branches with consistent guards. Fig. 1 defines an
auxiliary function for branches and their aggregated guards.

Combining all ingredients, we can employ the following
randomised check for continuity of a term if (aTx + c) <
0 thenF elseG (assuming w.l.o.g. a1 6= 0):

For all consistent branchesa (or straightline programs) S
and T in F and G, respectively, it must hold

JSK
(
−aT
−1x−1 + c

a1
,x−1

)
= JT K

(
−aT
−1x−1 + c

a1
,x−1

)
where x−1 = (x2, . . . , xn) is sampled e.g. from the multi-
variate standard normal.

aformally: (S, ψ) ∈ br(F ) and (T, χ) ∈ br(G) such that for
some assignment α, α |= χ ∧ ψ

This check is sound (i.e. admits only continuous terms,
typable via `cont) with probability 1. Crucially, consistency
can be checked very efficiently using off-the-shelf linear
arithmetic solvers [2].

6 Concluding Remarks

We have demonstrated that the reparameterisation gradi-
ent estimator, which is usually superior to other estima-
tors, can be safely applied to continuous but possibly non-
differentiable programs. We have studied categorical models,
which are useful for establishing continuity for programs
without branching. We have also presented a randomised
method to efficiently establish continuity in the presence of
standard conditionals.
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