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Abstract

Linear temporal logic (LTL) and, more generally, ω-regular objectives are alterna-
tives to the traditional discount sum and average reward objectives in reinforcement
learning (RL), offering the advantage of greater comprehensibility and hence ex-
plainability. In this work, we study the relationship between these objectives. Our
main result is that each RL problem for ω-regular objectives can be reduced to
a limit-average reward problem in an optimality-preserving fashion, via (finite-
memory) reward machines. Furthermore, we demonstrate the efficacy of this
approach by showing that optimal policies for limit-average problems can be found
asymptotically by solving a sequence of discount-sum problems approximately.
Consequently, we resolve an open problem: optimal policies for LTL and ω-regular
objectives can be learned asymptotically.

1 Introduction

Reinforcement learning (RL) is a machine learning paradigm whereby an agent aims to accomplish
a task in a generally unknown environment [34]. Traditionally, tasks are specified via a scalar
reward signal obtained continuously through interactions with the environment. These rewards are
aggregated over entire trajectories either through averaging or by summing the exponentially decayed
rewards. However, in many applications, there are no reward signals that can naturally be extracted
from the environment. Moreover, reward signals that are supplied by the user are prone to error in
that the chosen low-level rewards often fail to accurately capture high-level objectives. Generally,
policies derived from local rewards-based specifications are hard to understand because it is difficult
to express or explain their global intent.

As a remedy, it has been proposed to specify tasks using formulas in Linear Temporal Logic (LTL)
[36, 27, 8, 35, 13, 31, 12] or ω-regular languages more generally [27]. In this framework, the aim is
to maximise the probability of satisfying a logical specification. LTL can precisely express a wide
range of high-level behavioural properties such as liveness (infinitely often P ), safety (always P ),
stability (eventually always P ), and priority (P then Q then T ).

Motivated by this, a growing body of literature study learning algorithms for RL with LTL and
ω-regular objectives (e.g. [36, 13, 27, 6, 29, 18, 19, 14]). However, to the best of our knowledge,
all of these approaches may fail to learn provably optimal policies without prior knowledge of a
generally unknown parameter. Moreover, it is known that neither LTL nor (limit) average reward

*These authors contributed equally to this work.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



objectives are PAC (probably approximately correct) learnable [2]. Consequently, approximately
optimal policies can only possibly be found asymptotically but not in bounded time.*

In this work, we pursue a different strategy: rather than solving the RL problem directly, we study
optimality-preserving translations [2] from ω-regular objectives to more traditional rewards, in
particular, limit-average rewards. This method offers a significant advantage: it enables the learning
of optimal policies for ω-regular objectives by solving a single more standard problem, for which we
can leverage existing off-the-shelf algorithms (e.g. [23, 13, 27]). In this way, all future advances, in
both theory and practice, for these much more widely studied problems carry over directly, whilst
still enjoying significantly more explainable and comprehensible specifications. It is well-known
that such a translation from LTL to discounted rewards is impossible [2]. Intuitively, this is because
the latter cannot capture infinite horizon tasks such as reachability or safety [2, 37, 17]. Hence, we
instead study translations to limit-average rewards in this paper.

Contributions

We study reinforcement learning of ω-regular and LTL objectives in MDPs with unknown probability
transitions, translations to limit-average reward objectives and learning algorithms for the latter. In
detail:

1. We prove a negative result (Proposition 4): in general it is not possible to translate ω-regular
objectives to limit average objectives in an optimality-preserving manner if rewards are
memoryless (independent of previously performed actions).

2. On the other hand, our main result (Theorem 11) resolves Open Problem 1 in [2]: such an
optimality-preserving translation is possible if the reward assignment may use finite memory
as formalised by reward machines [21, 22].

3. To underpin the efficacy of our reduction approach, we provide the first convergence proof
(Theorem 15) of an RL algorithm (Algorithm 1) for average rewards. To the best of our
knowledge (and as indicated by [11]), this is the first proof without assumptions on the
induced Markov chains. In particular, the result applies to multichain MDPs, which our
translation generally produces, with unknown probability transitions. Consequently, we also
resolve Open Problem 4 of [2]: RL for ω-regular and LTL objectives can be learned in the
limit (Theorem 17).

Outline. We start by reviewing the problem setup in Section 2. Motivated by the impossibility
result for simple reward functions, we define reward machines (Section 3). In Section 4 we build
intuition for the proof of our main result in Section 5. Thereafter, we demonstrate that RL with
limit-average, ω-regular and LTL objectives can be learned asymptotically (Section 6). Finally, we
review related work and conclude in Section 7.

2 Background

Recall that a Markov Decision Process (MDP) is a tuple M = (S,A, s0, P ) where S is a finite
set of states, s0 ∈ S is the initial state, A is the finite set of actions and P : S × A × S → [0, 1]
is the probability transition function such that

∑
s′∈S P (s, a, s′) = 1 for every s ∈ S and a ∈ A.

MDPs may be graphically represented; see e.g. Fig. 1a. We let Runsfi(S,A) = S × (A× S)∗ and
Runs(S,A) = (S ×A)ω denote the set of finite runs and the set of infinite runs inM respectively.

A policy π : Runsfi(S,A) → D(A) maps finite runs to distributions over actions. We let Π(S,A)
denote the set of all such policies. A policy π is memoryless if π(s0a0 . . . sn) = π(s′0a

′
0 . . . s

′
m) for

all finite runs s0a0 . . . sn and s′0a
′
0 . . . s

′
m such that sn = s′m. For each MDPM and policy π, there

is a natural induced probability measure DM
π on its runs.

The desirability of policies for a given MDPM can be expressed as a function J : Π(S,A)→ R.
Much of the RL literature focuses on discounted-sum JM

Rγ and limit-average reward objectives JM
Ravg ,

which lift a reward functionR : S ×A× S → R for single transitions to runs ρ = s0a0s1a1 . . . as

*Formally, given ϵ, δ > 0, it is impossible to learn ϵ-approximately optimal policies with probability 1− δ in
finite time.
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(a) An MDP where all transitions occur with
probability 1, λ(s0, b, s1) = {p} and the rest
are labeled with ∅.

q0start q1 q2

∅

{p}

∅

{p}

∗

(b) A DRA, where F := {({q1}, ∅)}, for the objective
to visit the petrol station p exactly once.

Figure 1: Examples of an MDP and DRA.

follows:

JM
Rγ (π) := Eρ∼DM

π

[ ∞∑
i=0

γi · ri

]
JM
Ravg(π) := lim inf

t→∞
Eρ∼DM

π

[
1

t
·
t−1∑
i=0

ri

]
where ri = R(si, ai, si+1) and γ ∈ (0, 1) is the discount factor.

ω-Regular Objectives. ω-regular objectives (which subsume LTL objectives) are an alternative to
these traditional objectives. Henceforth, we fix an alphabetAP and a label function λ : S×A×S →
2AP for transitions, where 2X is the power set of a set X . Each run ρ = s0a0s1a1s2 . . . induces a
sequence of labels λ(ρ) = λ(s0, a0, s1)λ(s1, a1, s2) . . .. Thus, for a set L ⊆ (2AP)ω of “desirable”
label sequences we can consider the probability of a run’s labels being in that set: Pρ∼DM

π
[λ(ρ) ∈ L].

Example 1. For instance, an autonomous car may want to “visit a petrol station exactly once” to
save resources (e.g. time or petrol). Consider the MDP in Fig. 1a where the state s1 represents a
petrol station. We let AP = {p} (p for petrol), λ(s0, b, s1) = {p}, and the rest are labeled with ∅.
The desirable label sequences are L = {λ1λ2 · · · | for exactly one i ∈ N, λi = {p}}.

In this work, we focus on L which are ω-regular languages. It is well known that ω-regular languages
are precisely the languages recognised by Deterministic Rabin Automata (DRA) [24, 26]:

Definition 2. A DRA is a tuple A = (Q, 2AP , q0, δ, F ) where Q is a finite state set, 2AP is the
alphabet, q0 ∈ Q is the initial state, δ : Q × 2AP → Q is the transition function, and F =
{(A1, R1), . . . , (An, Rn)}, where Ai, Ri ⊆ Q, is the accepting condition. Let ρ ∈ (2AP)ω be an
infinite run and InfS(ρ) the set of states visited infinitely often by ρ. We say ρ is accepted by A if
there exists some (Ai, Ri) ∈ F such that ρ visits some state in Ai infinitely often while visiting every
states in Ri finitely often, i.e. InfS(ρ) ∩Ai ̸= ∅ and InfS(ρ) ∩Ri = ∅.

For example, the objective in Example 1 may be represented by the DRA in Fig. 1b.

Thus, the desirability of π is the probability of π generating an accepting sequence in the DRA A:

JM
A (π) := Pρ∼DM

π
[λ(ρ) is accepted by the automaton A] (1)

Remarks. The class of ω-regular languages subsumes languages expressed by Linear Temporal
Logic (LTL, see e.g. [4, Ch. 5]), a logical framework in which e.g. reachability (eventually P , ♢P ),
safety (always P , □P ) and reach-avoid (eventually P whilst avoiding Q, (¬Q)U P ) properties can
be expressed concisely and intuitively. The specification of our running Example 1 to visit the petrol
station exactly once can be expressed as the LTL formula (¬p)U (p ∧ �□¬p), where �Q denotes
“Q holds at the next step”. Furthermore, our label function λ, which maps transitions to labels, is
more general than other definitions (e.g. [36, 13, 27]) where λ′ maps states to labels. As a result,
we are able to articulate properties that involve actions, such as “to reach the state s while avoiding
taking the action a”.

Optimality-Preserving Specification Translations. Rather than solving the problem of synthe-
sising optimal policies for Eq. (1) directly, we are interested in reducing it to more traditional RL
problems and applying off-the-shelf RL algorithms to find optimal policies. To achieve this, the
reduction needs to be optimality preserving:
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Definition 3 ([2]). An optimality-preserving specification translation from ω-regular objectives to
limit-average rewards is a computable function mapping each tuple (S,A, λ,A) toR(S,A,λ,A) s.t.

policies maximising JM
Ravg also maximise JM

A , whereR := R(S,A,λ,A)

for every MDPM = (S,A, s0, P ), label function λ : S ×A× S → 2AP and DRA A.

We stress that since the probability transition function P is generally not known, the specification
translation may not depend on it.

3 Negative Result and Reward Machines

Reward functions emit rewards purely based on the transition being taken without being able to
take the past into account, whilst DRAs have finite memory. Therefore, there cannot generally be
optimality-preserving translations from ω-regular objectives to limit average rewards provided by
reward functions:

Proposition 4. There is an MDPM and an ω-regular language L for which it is impossible to find
a reward functionR : S ×A× S → R such that every JM

Ravg -optimal policy ofM also maximises
the probability of membership in L.

Remarkably, this rules out optimality-preserving specification translations even if transition probabili-
ties are fully known*.

Proof. Consider the deterministic MDP in Fig. 1a and the objective of Example 1 “to visit s1 exactly
once” expressed by the DRA A in Fig. 1b. Assume towards contradiction there exists a reward
functionR : S×A×S → R such that optimal policies w.r.t. JM

Ravg maximise acceptance byA. Note
that everyone policy π∗ maximising acceptance by the DRA induces the run s0(as0)

nbs1bs0(as0)
ω

for some n ∈ N, and JM
A (π∗) = 1. Thus, its limit-average reward is JM

Ravg(π∗) = R(s0, a, s0).
Now, consider the policy π always selecting action a with probability 1. As the run induced by π
is s0(as0)

ω, we deduce that JM
A (π) = 0 and JM

Ravg(π) = R(s0, a, s0) = JM
Ravg(π∗), which is a

contradiction since π is not JM
A -optimal.

Since simple reward functions lack the expressiveness to capture ω-regular objectives, we employ a
generalisation, reward machines [21, 22], whereby rewards may also depend on an internal state:

Definition 5. A reward machine (RM) is a tuple R = (U, u0, δu, δr) where U is a finite set of
states, u0 ∈ U is the initial state, δr : U × (S × A × S) → R is the reward function, and
δu : U × (S ×A× S)→ U is the update function.

Intuitively, a RM R utilises the current transition to update its states through δu and assigns the
rewards through δr. For example, Fig. 2a depicts a reward machine for the MDP of Fig. 1a, where
the states count the number of visits to s1 (0 times, once, more than once).

Let ρ = s0a0s1 · · · be an infinite run. Since δu is deterministic, it induces a sequence u0u1 . . . of
states inR, where ei = (si, ai, si+1) and ui+1 = δu(ui, ei). The limit-average reward of a policy π
is defined as:

JM
Ravg(π) := lim inf

t→∞
Eρ∼DM

π

[
1

t

t−1∑
i=0

δr(ui, ei)

]
It is seen that limit-average optimal policies π∗ for the MDP in Fig. 1a and the RM in Fig. 2a
eventually select action b exactly once in state s0 to achieve JM

Ravg(π∗) = 1.

In the following two sections, we present a general translation from ω-regular languages to limit-
average reward machines, and we show that our translation is optimality-preserving (Theorem 11).

*In Appendix A we show another negative result (Proposition 18): even for a strict subset of ω-regular
specifications such translations are impossible.
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u0start u1 u2

(s0, a, s0)/0

(s1, b, s0)/0

(s0, b, s1)/0

(s0, a, s0)/1

(s1, b, s0)/0

(s0, b, s1)/0

∗/0

(a) A reward machine for the objective of visiting the petrol
station exactly once. (The rewards are given following “/”.)

(s0, q0)start (s0, q1) (s0, q2)

(s1, q0) (s1, q1) (s1, q2)

b

a

b
b

a

b
b

a, b

(b) Product MDP for Fig. 1, where all
transitions have probability 1 and FM :=
{({(s0, q1), (s1, q1)}, ∅)}.

Figure 2: A reward machine and the product MDP for the running Example 1.

Remarks. Our definition of RM is more general than the one presented in [21, 22], where δ′u :
U → [S × A × S → R] and δ′r : U × 2AP → U . Note that (δ′u, δ

′
r) can be reduced to (δu, δr)

by expanding the state space of the RM to include the previous state and utilising the inverse label
function λ−1. It is worth pointing out that Theorem 11 does not contradict a negative result in [2]
regarding the non-existence of an optimality-preserving translation from LTL constraints to abstract
limit-average reward machines (where only the label of transitions is provided to δd and δr).

4 Warm-Up: Transitions with Positive Probability are Known

To help the reader gain intuition about our construction, we first explore the situation where the support
{(s, a, s′) ∈ S × A × S | P (s, a, s′) > 0} of the MDP’s transition function is known. Crucially,
we do not assume that the magnitude of these (non-zero) probabilities are known. Subsequently, in
Section 5, we fully eliminate this assumption.

This assumption allows us to draw connections between our problem and a familiar scenario in
probabilistic model checking [4, Ch. 10], where the acceptance problem for ω-regular objectives can
be transformed into a reachability problem. Intuitively, our reward machine monitors the state of the
DRA and provides reward 1 if the MDP and the DRA are in certain “good” states (0 otherwise).

For the rest of this section, we fix an MDP without transition function (S,A, s0), a set of possible
transitions E ⊆ S×A×S, a label function λ : S×A×S → 2AP and a DRAA = (Q, 2AP , q0, δ, F ).
Our aim is to find a reward machineR such that for every transition function P compatible with E
(formally: E = {(s, a, s′) | P (s, a, s′) > 0}), optimal policies for limit-average rewards are also
optimal for the acceptance probability of the DRA A.

4.1 Product MDP and End Components

First, we form the product MDPM⊗A (e.g. [36, 13]), which synchronises the dynamics of the
MDPM with the DRA A. Formally,M⊗A = (V,A, v0,∆, FM) where V = S ×Q is the set of
states, A is the set of actions, v0 = (s0, q0) is the initial state. The transition probability function
∆ : V × A × V → [0, 1] satisfies ∆(v, a, v′) = P (s, a, s′) given that v = (s, q), v′ = (s′, q′),
and δ(q, λ(s, a, s′)) = q′. The accepting condition is FM = {(A′

1, R
′
1), (A

′
2, R

′
2), . . .} where

A′
i = S ×Ai, B′

i = S ×Bi, and (Ai, Bi) ∈ F . A run ρ = (s0, q0)a0 · · · is accepted byM⊗A if
there exists some (A′

i, R
′
i) ∈ FM such that InfV(ρ) ∩A′

i ̸= ∅ and InfV(ρ) ∩R′
i = ∅, where InfV is

the set of states (s, v) in the product MDP visited infinitely often by ρ.

Note that product MDPs have characteristics of both MDPs and DRAs which neither possesses in
isolation: transitions are generally probabilistic and there is a notation of acceptance of runs. For
example, the product MDP for Fig. 1 is shown in Fig. 2b. Due to the deterministic nature of the DRA
A, every run ρ inM gives rise to a unique run ρ⊗ inM⊗A. Crucially, for every policy π,

Pρ∼DM
π
[ρ is accepted by A] = Pρ∼DM

π
[ρ⊗ is accepted byM⊗A] (2)

We make use of well-known almost-sure characterisation of accepting runs via the notion of accepting
end components:
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Definition 6. An end component (EC) ofM⊗A = (V,A, v0,∆, FM) is a pair (T,Act) where
T ⊆ V and Act : T → 2A satisfies the following conditions

1. For every v ∈ T and a ∈ Act(v), we have
∑

v′∈T ∆(v, a, v′) = 1, and
2. The graph (T,→Act) is strongly connected, where v →Act v

′ iff ∆(v, a, v′) > 0 for some
a ∈ Act(v).

(T,Act) is an accepting EC (AEC) if T ∩A′
i ̸= ∅ and T ∩B′

i = ∅ for some (A′
i, B

′
i) ∈ FM.

Intuitively, an EC is a strongly connected sub-MDP. For instance, for the product MDP in
Fig. 2b there are five end components, ({(s0, q0)}, (s0, q0) 7→ {a}), ({(s0, q1)}, (s0, q1) 7→ {a}),
({(s0, q2)}, (s0, q2) 7→ {a}), ({(s0, q2)}, (s0, q2) 7→ {b}) and ({(s0, q2)}, (s0, q2) 7→ {a, b}).
({(s0, q1)}, (s0, q1) 7→ {a}) is its only accepting end component.

It turns out that, almost surely, a run is accepted iff it enters an accepting end component and never
leaves it [1]. Therefore, a natural idea for a reward machine is to use its state to keep track of the
state q ∈ Q the DRA is in and give reward 1 to transitions (s, a, s′) if (s, q) is in some AEC (and
0 otherwise). Unfortunately, this approach falls short since the AEC may contain non-accepting
ECs, thus assigning maximal reward to sub-optimal policies.* As a remedy, we introduce a notion
of minimal AEC, and ensure that only runs eventually committing to one such minimal AEC get a
limit-average reward of 1.

Definition 7. An AEC (T,Act) is an accepting simple EC (ASEC) if |Act(v)| = 1 for every v ∈ T .

Let C1 = (T1,Act1), . . . , Cn = (Tn,Actn) be a collection of ASECs covering all states in ASECs,
i.e. if (s, q) is in some ASEC then (s, q) ∈ T1 ∪ · · · ∪ Tn. In particular, n ≤ |S ×Q| is sufficient.

We can prove that every AEC contains an ASEC (see Lemma 19 in Appendix B). Consequently,

Lemma 8. Almost surely, if ρ is accepted by A then ρ⊗ reaches a state in some ASEC Ci ofM⊗A.

4.2 Reward Machine and Correctness

Next, to ensure that runs eventually commit to one such ASEC we introduce the following notational
shorthand: for (s, q) ∈ T1 ∪ · · · ∪ Tn, let C(s,q) = (T(s,q),Act(s,q)) be the Ci with minimal i
containing (s, q), i.e. C(s,q) := Cmin{1≤i≤n|(s,q)∈Ti}.

Intuitively, we give a reward of 1 if (s, q) is in one of the C1, . . . , Cn. However, once an action is
performed which deviates from Act(s,q) no rewards are given thereafter, thus resulting in a limit
average reward of 0.

A state in the reward machine has the form q ∈ Q, keeping track of the state in the DRA, or ⊥, which
is a sink state signifying that in a state in C1, . . . , Cn we have previously deviated from Act(s,q).

Finally, we are ready to formally define the reward machineR = R(S,A,λ,A) exhibiting our specifi-
cation translation as (Q ∪ {⊥}, q0, δu, δr), where

δu(u, (s, a, s
′)) :=


⊥ if u = ⊥ or(

(s, u) ∈ T1 ∪ · · · ∪ Tn and a ̸∈ Act(s,u)(s, u)
)

δ(u, λ(s, a, s′)) otherwise

δr(u, (s, a, s
′)) :=

{
1 if u ̸= ⊥ and (s, u) ∈ T1 ∪ · · · ∪ Tn

0 otherwise

For our running example, this construction essentially yields the reward machine in Fig. 2a (with
some inconsequential modifications cf. Fig. 4 in Appendix B).

Theorem 9. For all transition probability functions P with support E, policies maximising the
limit-average reward w.r.t.R also maximise the acceptance probability of the DRA A.

This result follows immediately from the following (the full proof is presented in Appendix B):

*To illustrate this point, consider the product MDP ({s0, s1}, {a, b}, s0, P, F ) where P (s0, b, s0) =
P (s0, a, s1) = P (s1, a, s0) = 1 and F = {({s1}, ∅)}, i.e. the objective is to visit s1 infinitely often.
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Lemma 10. Let P be a probability transition function with support E andM := (S,A, s0, P ).

1. For every policy π, JM
Ravg(π) ≤ JM

A (π).
2. For every policy π, there exists some policy π′ satisfying JM

A (π) ≤ JM
Ravg(π′).

Proof sketch. 1. By construction, every run receiving a limit-average reward of 1, must have entered
some ASEC Ci and never left it. Furthermore, almost surely all states are visited infinitely often and
the run is accepted by definition of accepting ECs.

2. By Lemma 8, almost surely, a run is only accepted if it enters some Ci. We set π′ to be the
policy agreeing with π until reaching one of the C1, . . . , Cn and henceforth following the action
Act(st,qt)(st, qt), where qt is the state of the DRA at step t, yielding a guaranteed limit-average
reward of 1 for the run by construction.

5 Main Result

In this section, we generalise the approach of the preceding section to prove our main result:
Theorem 11. There exists an optimality-preserving translation from ω-regular languages to limit-
average reward machines.

Again, we fix an MDP without transition function (S,A, s0), a label function λ : S ×A× S → 2AP

and a DRAA = (Q, 2AP , q0, δ, F ). Note that the ASECs of a product MDP are uniquely determined
by the non-zero probability transitions. Thus, for each set of transitions E ⊆ (S×Q)×A× (S×Q),
we let CE1 = (T1,Act1), . . . , CEn = (Tn,Actn) denote a collection of ASECs covering all states in
ASECs w.r.t. the MDPs in which E is the set of non-zero probability transitions.* Then, for each set
E and state (s, q) ∈ TE

1 ∪ · · · ∪ TE
n , we let CE(s,q) = (TE

(s,q),ActE(s,q)) be the ASEC CEi that contains
(s, q) in which the index i is minimal.

Our reward machine R = R(S,A,λ,A) extends the ideas from the preceding section. Importantly,
we keep track of the set of transitions E taken so far and assign rewards according to our current
knowledge about the graph of the product MDP. Therefore, we propose employing states of the
form (q, f, E), where q ∈ Q keeps track of the state of the DRA, f ∈ {⊤,⊥} is a status flag and
E ⊆ (S ×Q)×A× (S ×Q) memorises the transitions in the product MDP encountered thus far.

Intuitively, we set the flag to ⊥ if we are in MDP state s, (s, q) is in one of the CE1 , . . . , CEn and the
chosen action deviates from ActE(s,q)(s, q). We can recover from ⊥ by discovering new transitions.
Besides, we give reward 1 if f = ⊤ and (s, q) is in one of the CE1 , . . . , CEn (and 0 otherwise).

The status flag is required since discovering new transitions will change the structure of (accepting
simple) end components. Hence, differently from the preceding section, it is not sufficient to have a
single sink state.

The initial state of our reward machine is u0 := (q0,⊤, ∅) and we formally define the update and
reward functions as follows:

δu((q, f, E), (s, a, s′)) :=


(q′,⊥, E) if f = ⊥ and e ∈ E

(q′,⊥, E) if f = ⊤, e ∈ E, (s, q) ∈ TE
1 ∪ · · · ∪ TE

n and
a ̸∈ ActE(s,q)(s, q)

(q′,⊤, E ∪ {e}) otherwise

δr((q, f, E), (s, a, s′)) :=

{
1 if f = ⊤, (s, q) ∈ TE

1 ∪ · · · ∪ TE
n

0 otherwise

where q′ := δ(q, λ(s, a, s′)) and e := ((q, s), a, (q′, s′)).
Example 12. For our running example (see Example 1 and Fig. 1) initially no transitions are
known (hence no ASECs). Therefore, all transitions receive reward 0. Once action a has been
performed in state s0 in the MDPM and (q1, f, E) in the reward machineR, we have discovered the
ASEC ({(s0, q1)}, (s0, q1) 7→ {a}) and a reward of 1 is given henceforth unless action b is selected
eventually. In that case, we leave the ASEC and we will not discover further ASECs since there is

*To achieve the same number n of ASECs we can add duplicates. If there are no ASECs we can set Ti := ∅.
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only one. From here, it is not possible to return to state q1 in the DRA and henceforth only reward 0
will be obtained.

Theorem 11 is proven by demonstrating an extension of Lemma 10 (see Appendix C):
Lemma 13. SupposeM = (S,A, s0, P ) is an arbitrary MDP.

1. For every policy π, JM
Ravg(π) ≤ JM

A (π).
2. For every policy π, there exists some policy π′ satisfying JM

A (π) ≤ JM
Ravg(π′).

Note that Lemma 13 immediately proves that the reduction is not only optimality preserving (Theo-
rem 11) but also robust: every ϵ-approximately limit-average optimal policy is also ϵ-approximately
optimal w.r.t. JM

A . This observation is important because exactly optimal policies for the limit
average problem may be hard to find.

Intuitively, to see part 1 of Lemma 13 we note: If an average reward of 1 is obtained for a run, the
reward machine believes, based on the partial observation of the product MDP, that the run ends
up in an ASEC. Almost surely, we eventually discover all possible transitions involving the same
state-action pairs as this ASEC and therefore this must also be an ASEC w.r.t. the true, unknown
product MDP. For part 2, we modify the policy π similarly as in Lemma 10 by selecting actions
Act(st, qt) once having entered an ASEC C = (T,Act) w.r.t. the true, unknown product MDP.*

6 Convergence for Limit Average, ω-Regular and LTL Objectives

Thanks to the described translation, advances (in both theory and practice) in the study of RL with
average rewards carry over to RL with ω-regular and LTL objectives. In this section, we show that it
is possible to learn optimal policies for limit average rewards in the limit. Hence, we resolve an open
problem [2]: also RL with ω-regular and LTL objectives can also be learned in the limit.

We start with the case of simple reward functionsR : S ×A× S → R. Recently, [16] have shown
that discount optimal policies for sufficiently high discount factor γ ∈ [0, 1) are also limit average
optimal. This is not enough to demonstrate Theorem 15 since γ is generally not known and in finite
time we might only obtain approximately limit average optimal policies.

Our approach is to reduce RL with average rewards to a sequence of discount sum with increasingly
high discount factor, which are solved with increasingly high accuracy. Our crucial insight is that
eventually the approximately optimal solutions to the discounted problems will also be limit average
optimal (see Appendix D for a proof):
Lemma 14. Suppose γk ↗ 1, ϵk ↘ 0 and suppose each πk is a memoryless policy. Then there exists
k0 such that for all K ∋ k ≥ k0, πk is limit average optimal, where K is the set of k ∈ N satisfying
JM
Rγk (πk) ≥ JM

Rγk (π)− ϵk for all memoryless policies.

Our proof harnesses yet another notion of optimality: a policy π is Blackwell optimal (cf. [5] and
[20, Sec. 8.1]) if there exists γ ∈ (0, 1) such that π is γ-discount optimal for all γ ≤ γ < 1. It
is well-known that memoryless Blackwell optimal strategies always exist [5, 16] and they are also
limit-average optimal [20, 16].

Thanks to the PAC (probably approximately correct) learnability of RL with discounted rewards
[23, 33], there exists an algorithm Discounted which receives as inputs a simulator forM, R as
well as γ, ϵ and δ, and with probability 1− δ returns an ϵ-optimal memoryless policy for discount
factor γ. In view of Lemma 14, our approach is to run the PAC algorithm for discount-sum RL for
increasingly large discount factors γ and increasingly low δ and ϵ (Algorithm 1).
Theorem 15. RL with average reward functions can be learned in the limit by Algorithm 1: almost
surely there exists k0 ∈ N such that πk is limit-average optimal for k ≥ k0.

Proof. Using the definition for K of Lemma 14 of iterations where the PAC-MDP algorithm succeeds,

E [#(N \K)] ≤
∑
k∈N

P[PAC-MDP fails in iteration k] ≤
∑
k∈N

δk =
∑
k∈N

1

k2
<∞

*NB The modified policy depends on the true, unknown support of the Probability transition function; we
only claim the existence of such a policy.
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Algorithm 1 RL for limit average rewards

Require: simulator forM,R
for k ∈ N do

πk ← Discounted(M,R, 1− 1/k︸ ︷︷ ︸
γk

, 1/k︸︷︷︸
ϵk

, 1/k2︸︷︷︸
δk

)

end for

The claim follows immediately with Lemma 14.

Next, we turn to the more general case of reward machines. [21, 22] observe that optimal policies for
reward machines can be learned by learning optimal policies for the modified MDP which additionally
tracks the state the reward machine is in and assigns rewards accordingly. We conclude at once:
Corollary 16. RL with average reward machines can be learned in the limit.

Finally, harnessing Theorem 11 we resolve Open Problem 4 of [2]:
Theorem 17. RL with ω-regular and LTL objectives can be learned in the limit.

Discussion. Algorithm 1 makes independent calls to black box algorithms for discount sum rewards.
Many such algorithms with PAC guarantees are model based (e.g. [23, 33]) and sample from the
MDP to obtain suitable approximations of the transition probabilities. Thus, Algorithm 1 can be
improved in practice by re-using approximations obtained in earlier iterations and refining them.

7 Related Work and Conclusion

The connection between acceptance of ω-regular languages in the product MDP and AECs is well-
known in the field of probabilistic model checking [4, 10]. As an alternative to DRAs [36, 12, 29],
Limit Deterministic Büchi Automata [32] have been employed to express ω-regular languages for RL
[35, 6, 9, 18, 19].

A pioneering work on RL for ω-regular rewards is [36], which expresses ω-regular objectives using
Deterministic Rabin Automata. Similar RL approaches for ω-regular objectives can also be found
in [12, 35, 9, 13]. The authors of [13, 27] approach RL for ω-regular objectives directly by studying
the reachability of AECs in the product MDP and developing variants of the R-MAX algorithm [7] to
find optimal policies. However, these approaches require prior knowledge of the MDP, such as the
structure of the MDP, the optimal ϵ-return mixing time [13], or the ϵ-recurrence time [27].

Various studies have explored reductions of ω-regular objectives to discounted rewards, and subse-
quently applied Q-learning and its variants for learning optimal policies [6, 29, 18, 19, 14]. These
translations are generally not optimality preserving unless the discount factor is selected in a suitable
way. Again, this is impossible without prior knowledge of the exact probability transition functions
in the MDP.

Furthermore, whilst there are numerous convergent RL algorithms for average rewards for unichain
MDPs (e.g. [7, 38, 15, 30, 3]), it is unknown whether such an algorithm exists for general multichain
MDPs with a guaranteed convergence property. In fact, a negative result in [2] shows that there is no
PAC (probably approximately correct) algorithm for LTL objectives and limit-average rewards when
the MDP transition probabilities are unknown.

[7] have proposed an algorithm with PAC guarantees provided ϵ-return mixing times are known.
They informally argue that for fixed sub-optimality tolerance ϵ, this assumption can be lifted by
guessing increasingly large candidates for the ϵ-return mixing time. This yields ϵ-approximately
optimal policies in the limit. However, it is not clear how to asymptotically obtain exactly optimal
policies as this would require simultaneously decreasing ϵ and increasing guesses for the ϵ-return
mixing time (which depends on ϵ).

Conclusion. We have presented an optimality-preserving translation from ω-regular objectives to
limit-average rewards furnished by reward machines. As a consequence, off-the-shelf RL algorithms
for average rewards can be employed in conjunction with our translation to learn policies for ω-regular
objectives. Furthermore, we have developed an algorithm asymptotically learning provably optimal
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policies for limit-average rewards. Hence, also optimal policies for ω-regular and LTL objectives can
be learned in the limit. Our results provide affirmative answers to two open problems in [2].

Limitations. We focus on MDPs with finite state and action sets and assume states are fully
observable. The assumption of Section 4 that the support of the MDP’s probability transition function
is known is eliminated in Section 5. Whilst the size of our general translation—the first optimality-
preserving translation—is exponential, the additional knowledge in Section 4 enables a construction
of the reward machine of the same size as the DRA expressing the objective. Hence, we conjecture
that this size is minimal. Since RL with average rewards is not PAC learnable, we cannot possibly
provide finite-time complexity guarantees of our Algorithm 1.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main results mentioned in the abstract and introduction are Proposition 4
and Theorems 11, 15 and 17. They accurately reflect the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Full proofs are presented in the appendices and results are cross-referenced.
At the beginning of Section 4 we assume knowledge of the support of the MDP’s proba-
bility transition function for presentational purposes. This assumption is fully removed in
Section 5.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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s1

s3

s2a/1 a/1

b/p2

a/p1 a/1− p1

b/1− p2

b/1

(a) An MDP M where λ(s1, a, s1) = λ(s3, b, s0) = {c},
and the rest are labeled with ∅.

q0start q1

{c}
∅ {c}

∅
(b) A DRA A for the objective of visiting s1 or
s3 infinitely often where F := {({q1}, ∅)}.

Figure 3: Counter-example for prefix-independent objectives.

A Supplementary Materials for Section 3

Recall that a ω-regular language L is prefix-independent if for every infinite label sequence
w ∈ (2AP)ω, we have w ∈ L iff w′ ∈ L for every suffix w′ of w. We prove that there is no
optimality-preserving translation for reward functions regardless of whether L is prefix-independent
or not. The prefix-dependent case was given in Section 3. Here we focus on the other case:

Proposition 18. There exists a tuple (S,A, s0, λ) and a prefix-independent ω-regular language L for
which it is impossible to find a reward functionR : S ×A× S → R such that for every probability
transition P , letM = (S,A, s0, P, λ), then everyRavg-optimal policy ofM is also L-optimal (i.e.
maximizing the probability of membership in L).

Proof. Our proof technique is based on the fact that we can modify the transition probability function.
Consider the MDP in Fig. 3a, where the objective is to visit either s1 or s3 infinitely often. It can
be checked that the DRA in Fig. 3b captures the given objective and the language accepted by A is
prefix-independent. There are only two deterministic memoryless policies: π1, which consistently
selects action a, and π2, which consistently selects action b. For the sake of contradiction, let’s
assume the existence of a reward functionR that preserves optimality for every transition probability
function P . Pick p1 = 1 and p2 = 0. Then JM

A (π1) = 1 and JM
A (π2) = 0, which implies that

π1 is A-optimal whereas π2 is not. Thus R(s1, a, s1) = JM
Ravg(π1) > JM

Ravg(π2) = R(s0, b, s0).
Now, assume p1, p2 ∈ (0, 1). Accordingly, we have JM

Ravg(π1) ≥ p1R(s1, a, s1) and we can
deduce that (e.g. by solving the linear equation system described in [28, §8.2.3]) JM

Ravg(π2) =
p2

2−p2
R(s0, b, s0) + 1−p2

2−p2
(R(s0, b, s3) +R(s3, b, s0)). As a result:

lim
p1→1

JM
Ravg(π1) ≥ R(s1, a, s1) > R(s0, b, s0) = lim

p2→1
JM
Ravg(π2)

Consequently, if p1, p2 are sufficiently large then JM
Ravg(π1) > JM

Ravg(π2). However, this contradicts
to the fact that π2 is A-optimal and π1 is not, since JM

A (π2) = 1 > p1 = JM
A (π1). Hence, there is

no such reward functionR.

B Supplementary Materials for Section 4

Lemma 19. Every AEC contains an ASEC.

Proof. Consider an AEC C = (T,Act) ofMA. We will prove this by using induction on the number
of actions in C, denoted as size(C) :=

∑
s∈T |Act(s)| ≥ 1. For the base case where size(C) = 1, it

can be deduced that C consists of only one accepting state with a self-loop. Therefore, C itself is an
ASEC.
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Now, let’s assume that size(C) = k + 1 ≥ 2. If C is already an ASEC, then we are done. Otherwise,
there exists a state s ∈ T such that |Act(s)| > 1. Since C is strongly connected, there exists a
finite path ρ = sas1a1 . . . snansF where sF is an accepting state and all the states s1, . . . , sn are
different from s. Let a′ ∈ Act(s) such that a′ ̸= a. We construct a new AEC C′ = (T ′,Act′) by
first removing a′ from Act(s) and then removing all the states that are no longer reachable from s
along with their associated transitions. It is important to note that after the removal, sF ∈ T ′ since
we can reach sF from s without taking the action a′. (Besides, the graph is still strongly connected.)
Since size(C′) ≤ k, we can apply the induction hypothesis to conclude that C′ contains an ASEC,
thus completing the proof.

Lemma 8. Almost surely, if ρ is accepted by A then ρ⊗ reaches a state in some ASEC Ci ofM⊗A.

To proof this result, we recall a well-known result in probabilistic model checking that with probability
of one (wpo), every run ρ of the policy π eventually stays in one of the ECs ofMA and visits every
transition in that EC infinitely often. To state this formally, we define for any run ρ = s0a0s1 · · · ,

InfSA(ρ) := {(s, a) ∈ S ×A | |{i ∈ N | si = s ∧ ai = a}| =∞}

the set of state-action-pairs occurring infinitely often in ρ. Furthermore, a state-action set χ ⊆ S ×A
defines a sub-MDP sub(χ) := (T,Act), where

T := {s ∈ S | (s, a) ∈ χ for some a ∈ A} Act(s) := {a | (s, a) ∈ χ}

Lemma 20 ([10]). Pρ∼DM⊗A
π

[sub(InfSA(ρ)) is an end component] = 1.

For the sake of self-containedness, we recall the proof of [10].

Proof. We start with two more definitions: for any sub-MDP (T,Act) [1], let

sa(T,Act) := {(s, a) ∈ T ×A | a ∈ Act(s)}

be the set of state-action pairs (s, a) such that a is enabled in s. Finally, let

Ω(T,Act) := {ρ ∈ Runs(S,A) | InfSA(ρ) = sa(T,Act)}

be the set of runs such that action a is taken infinitely often in state s iff s ∈ T and a ∈ Act(s). Note
that the Ω(T,Act) constitute a partition of Runs(S,A).

Therefore, it suffices to establish for any sub-MDP (T,Act), (T,Act) is an end-component or
P[ρ ∈ Ω(T,Act)] = 0.

Let (T,Act) be an arbitrary sub-MDP. First, suppose there exist s ∈ T and a ∈ Act(t) such that
p :=

∑
s′∈T ∆(t, a, t′) < 1. By definition each ρ ∈ Ω(T,Act) takes action a in state s infinitely often.

Hence, not only P[ρ ∈ Ω(T,Act)] ≤ pk for all k ∈ N but also P[ρ ∈ Ω(T,Act)] = 0.

Thus, we can assume that for all s ∈ T and a ∈ Act(t),
∑

s′∈T ∆(t, a, t′) = 1. If Ω(T,Act) = ∅
then clearly P[ρ ∈ Ω(T,Act)] = 0 follows. Otherwise, take any ρ = s0a0a1 · · · ∈ Ω(T,Act), and let
t, t′ ∈ T be arbitrary. We show that there exists a connecting path in (T,→Act), which implies that
(T,Act) is an end component.

Evidently, there exists an index i0 such that all state-action pairs occur infinitely often in ρ, i.e.

{(si0 , ai0), (si0+1, ai0+1), . . .} = InfSA(ρ)

Thus, for all i ≥ i0, si ∈ T and ai ∈ Act(si), and for all i′ > i ≥ i0, there is a path from si to si′ in
(T,→Act). Finally, it suffices to note that clearly for some i′ > i = i0, si = t and si′ = t′.

Proof of Lemma 8. By Lemma 20, almost surely sub(InfSA(ρ)) is an accepting end component.
Clearly, ρ is only accepted by the product MDP if this end component is an accepting EC. By
Lemma 19 this AEC contains an ASEC. Therefore, by definition of sub(InfSA(ρ)), ρ almost surely
in particular enters some ASEC. Finally, since the C1, . . . , Cn cover all states in ASECs, ρ almost
surely enters some Ci.
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q0start q1 ⊥ q2

(s0, a, s0)/0

(s1, b, s0)/0

(s0, b, s1)/0

(s0, a, s0)/1

(s1, b, s0)/0

(s0, b, s1)/1

∗/0 ∗/0

Figure 4: Reward machine yielded by our construction in Section 4 for the running example.

Before turning to the proof of Lemma 10, let JM
Ravg(ρ) = lim inft→∞

1
t ·

∑t−1
i=0 ri denote the limit-

average reward of a run ρ. Note that, for any run ρ, JM
Ravg(ρ) ∈ {0, 1}. Thus, by the dominated

convergence theorem [25, Cor. 6.26],

Pρ∼DM
π

[
JM
Ravg(ρ) = 1

]
= Eρ∼DM

π
[JM

Ravg(ρ)] = lim inf
t→∞

Eρ∼DM
π

[
1

t
·
t−1∑
i=0

ri

]
= JM

Ravg(π)

(3)

Lemma 10. Let P be a probability transition function with support E andM := (S,A, s0, P ).

1. For every policy π, JM
Ravg(π) ≤ JM

A (π).
2. For every policy π, there exists some policy π′ satisfying JM

A (π) ≤ JM
Ravg(π′).

Proof. 1. For any run ρ, JM
Ravg(ρ) = 1 only if ρ⊗ enters a Ci and never leaves it. (ρ⊗ might

have entered other Cj’s earlier but then those necessarily need to overlap with yet another
Ck such that i ≤ k < j to avoid being trapped in state ⊥, resulting in JM

Ravg(ρ) = 1.
Furthermore, this Ci can only overlap with Cj if i < j. Otherwise, the reward machine
would have enforced transitioning to Cj .)

Since Ci is an ASEC, ρ⊗ is accepted by the product MDPM⊗A. Hence, by Eqs. (2)
and (3),

JM
Ravg(π) = Pρ∼DM

π

[
JM
Ravg(ρ) = 1

]
≤ Pρ∼DM

π

[
ρ⊗ accepted byM⊗A

]
= JM

A (π)

2. Let π be arbitrary. For a run s0a0 · · · let qt be the state of the DRA in step t. Define π′

to follow π until reaching st such that (st, qt) ∈ T1 ∪ · · · ∪ Tn. Henceforth, we select the
(unique) action guaranteeing to stay in the Ci with minimal i including the current state, i.e.
Act(q,u)(q, u). Formally*,

π′(s0a0 · · · st) :=

{
π(s0a0 · · · st) if (st, qt) ̸∈ T1 ∪ · · · ∪ Tn

Act(st,qt)(st, qt) otherwise
(4)

Note that whenever a run ρ ∼ DM
π′ follows the modified policy π′ and its induced run ρ⊗

reaches some ASEC Ci then JM
Ravg(ρ) = 1. Thus,

Pρ∼DM
π′
[ρ⊗ reaches some Ci] ≤ Eρ∼DM

π′
[JM

Ravg(ρ)] = JM
Ravg(π′)

Furthermore, by Lemma 8 almost surely, every induced run ρ⊗ accepted by the product
MDP must reach some Ci. Consequently, by Eq. (2),

JM
A (π) = Pρ∼DM

π
[ρ⊗ is accepted byM⊗A]

≤ Pρ∼DM
π
[ρ⊗ reaches some Ci]

= Pρ∼DM
π′
[ρ⊗ reaches some Ci] ≤ JM

Ravg(π′)

In the penultimate step, we have exploited the fact that π and π′ agree until reaching the
first Ci.

*We slightly abuse notation in the “otherwise”-case and denote by Act(st,qt)(st, qt) the distribution selecting
the state in the singleton set Act(st,qt)(st, qt) with probability 1.
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Lemma 13. SupposeM = (S,A, s0, P ) is an arbitrary MDP.

1. For every policy π, JM
Ravg(π) ≤ JM

A (π).
2. For every policy π, there exists some policy π′ satisfying JM

A (π) ≤ JM
Ravg(π′).

Proof. 1. For a run ρ, let Eρ be the set of transitions encountered in the product MDP. Note
that JM

Ravg(ρ) = 1 only if ρ⊗ enters some CEρ

i and never leaves it. (ρ⊗ might have entered
other CEj s earlier for E ⊆ Eρ.)

With probability 1, Eρ contains all the transitions present in CEρ

i in the actual MDP. (NB
possible transitions outside of CEρ

i might be missing from Eρ.) In particular, with probability
1, CEρ

i is also an ASEC for the true unknown MDP and ρ⊗ is accepted by the product MDP
M⊗A. Consequently, using Eq. (3) again,

JM
Ravg(π) = Pρ∼DM

π
[JM

Ravg(ρ) = 1] ≤ Pρ∼DM
π
[ρ⊗ accepted byM⊗A] = JM

A (π)

2. Let π be arbitrary. We modify π to π′ as follows: until reaching an ASEC C = (T,Act)
w.r.t. the true, unknown* set of transitions E∗ follow π. Henceforth, select action
ActE

∗

(st,qt)(st, qt).

We claim that whenever ρ ∼ DM
π′ follows the modified policy π′ and ρ⊗ reaches some

ASEC in the true product MDP, JM
Ravg(ρ) = 1.

To see this, suppose ρ ∼ DM
π′ is such that for some minimal t0 ∈ N, (st0 , qt0) ∈ TE∗

1 ∪
· · · ∪ TE∗

n . Let C = (T,Act) := CE∗

(st0 ,qt0 )
.

Define Et to be the transitions encountered up to step t ∈ N, i.e. Et :=
{((sk, qk), ak, (sk+1, qk+1)) | 0 ≤ k < t}. Then almost surely for some minimal t ≥ t0,
Et contains all transitions in C, and no further transitions will be encountered, i.e. for all
t′ ≥ t, Et′ = Et. Define E := Et. Note that for all ((s, q), a, (s′, q′)) ∈ E such that
(s, q) ∈ T , Act(s, q) = {a}. (This is because upon entering the ASEC C we immediately
switch to following the action dictated by Act. Thus, we avoid “accidentally” discovering
other ASECs w.r.t. the partial knowledge of the product MDP’s graph, which might other-
wise force us to perform actions leaving C.) Consequently, there cannot be another ASEC
C′ = (T ′,Act′) w.r.t. E overlapping with C, i.e. T ∩ T ′ ̸= ∅. Therefore, for all (s, q) ∈ C,
ActE(s,q) = Act. Consequently, JM

Ravg(ρ) = 1.

Thus,

Pρ∼DM
π′
[ρ⊗ reaches some ASEC in true product MDP] ≤ Eρ∼DM

π′
[JM

Ravg(ρ)] = JM
Ravg(π′)

Consequently,

JM
A (π) = Pρ∼DM

π
[ρ⊗ is accepted byM⊗A]

≤ Pρ∼DM
π
[ρ⊗ reaches some ASEC in true product MDP]

= Pρ∼DM
π′
[ρ⊗ reaches some ASEC in true product MDP] ≤ JM

Ravg(π′)

In the penultimate step we have exploited that π and π′ agree until reaching some ASEC in
true product MDP.

D Supplementary Materials for Section 6

Let Π be the set of all memoryless policies and Π∗ be the set of all limit-average optimal policies.
Besides, let w∗ := JM

Ravg(π∗) the limit average reward of any optimal π∗ ∈ Π∗.

Lemma 14 is proven completely analagously to the following (where K = N):
*NB The modified policy depends on the true, unknown E∗; we only claim the existence of such a policy.
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Lemma 21. Suppose γk ↗ 1, ϵk ↘ 0 and each πk is a memoryless policy satisfying JM
Rγk (πk) ≥

JM
Rγk (π) − ϵk for all π ∈ Π. Then there exists k0 such that for all k ≥ k0, πk is limit average

optimal.

Proof. We define ∆ := minπ∈Π\Π∗ JM
Ravg(π)− w∗ > 0. Recall (see e.g. [20, Sec. 8.1]) that for any

policy π ∈ Π,

lim
γ↗1

(1− γ) · JM
Rγ (π) = JM

Ravg(π) (5)

Since Π is finite, due to Eq. (5) there exists γ0 such that

|JM
Ravg(π)− (1− γ) · JM

Rγ (π)| ≤
∆

4
(6)

for all π ∈ Π and γ ∈ [γ0, 1). Let π∗ be a memoryless Blackwell optimal policy (which exists due to
[5, 16]). Note that

w∗ = JM
Ravg(π∗) (7)

and there exists γ ∈ [0, 1) such that

JM
Rγ (π∗) ≥ JM

Rγ (π) (8)

for all γ ∈ [γ, 1) and π ∈ Π. Moreover, there clearly exists k0 such that ϵk ≤ ∆/4 and γk ≥ γ0, γ
for all k ≥ k0.

Therefore, for any k ≥ k0,

|JM
Ravg(πk)− w∗| ≤ (1− γk) ·

∣∣JM
Rγk (πk)− JM

Rγk (π
∗)
∣∣+ ∆

2
Eqs. (6) and (7)

≤ (1− γk) · ϵk +
∆

2
premise and Eq. (8)

≤ 4

3
·∆

Consequently, by definition of ∆, πk ∈ Π∗.

E Alternative Approach for Section 4

E.1 Model-Checking MDP

Proposition 22 (Deterministic Positional Policy). There is a deterministic positional policy πdp such
that for every state u = (s, q) in the product MDPM⊗A: if u is in an AEC, then the πdp-runs
from u are accepted with probability one. Moreover, πdp is computable in linear time.

Proof. For every (maximal) AEC C, let RC be the set of accepting states in C. Let u = (s, q) be in
an AEC C. For u ̸∈ RC , define πdp(u) to be a label of the first edge on a shortest path (in C) from u
to RC . For u ∈ RC , define πdp(u) as any label b such that all b-edges from u are inside C.

If a run infinitely often visits a state u ̸∈ RC in C then with probability one it visits infinitely often
a state which is closer than u to RC . Therefore, with probability one RC is visited infinitely often.
Hence, with probability one the πdp-runs from any u ∈ C are accepting.

It is clear that πdp is computable in linear time (i.e. from the product Graph(M)⊗A and its maximal
AECs, where the graph Graph(M) consists of transitions with non-zero probability inM).

The next well-known theorem is the fundamental for model-checking of MDP (e.g. [1, 4]).
Theorem 23 (Reduction of Model-Checking to Reachability). LetM be an MDP and A be a DRA.
Let G be the set of states in the union AECs ofM⊗A. Let popt be the value of optimal policy to
reach G from (s, q0). Then the value of optimal policy to satisfy A from s is also popt.

Hence, the following policy is an optimal policy to satisfy A form s:

Follow an optimal policy to reach the union G of AECs from (s, q0),
then when a state in G is reached switch to πdp.
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E.2 Reduction to Reward Machine

Now we are ready to define a reward machine, R such that its optimal policies are optimal for A
satisfiability. Its states are the states Q of A and a sink state ⊥. The transition have value 0 until a
state in G is reached. Then, if we follow πdp the transitions have value one. once we deviate from
πdp we enter the sink state and from now on all transitions will have value 0.

From Proposition 22, Theorem 23 and the definition ofR we obtain:
Theorem 24. For all transition probability functions P with support E, policies maximising the
limit-average reward w.r.t.R also maximise the acceptance probability of the DRA A.

Proof. It is clear that the reward of any policy is bounded by popt from Theorem 23. Moreover, a
policy has reward popt iff it reaches G with probability popt and then follows πdp.
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