

Idealised Programming Language:

 $M := x \mid \underline{r} \mid M + M \mid M \cdot M \mid \text{if } M < 0 \text{ then } M \text{ else } M \mid \lambda$

Problem Statement

 $\operatorname{argmin}_{\boldsymbol{\theta}} \mathbb{E}_{\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[\llbracket M \rrbracket \left(\boldsymbol{\theta}, \mathbf{z} \right) \right]$

where M is a term of type R and has free variables θ and R, and $\mathcal{N}(\mathbf{0}, \mathbf{I})$ is the multivariate standard normal distrib

Find stationary points

Example: maximisation of ELBO where the variation dist represented as a parameterised transformation of a noise

$$E_{\mathbf{z}\sim q(z)}\left[\log(p(\phi_{\theta}(z))) - \log q_{\theta}(\phi_{\theta}(z))
ight]$$

polynomials after simplification

Reparametrisation Gradient is Biased [LYY18]

Consider

$$M \equiv -0.5 \cdot (z + \theta)^2 + (\text{if } z + \theta < 0 \text{ then } 0 \text{ else } 1) + 0$$

Then

$$abla_{m{ heta}} \mathbb{E}_{z \sim \mathcal{N}(0,1)} \left[\llbracket M
rbracket \left(m{ heta}, \mathbf{z}
ight)
ight] = - heta + \mathcal{N}(- heta \mid \mathbf{0}, \mathbf{1}) \
onumber \
o$$

Vanishing gradient estimator does not imply stationarity

Contribution: *Provable convergence* to stationary points unbiased gradient estimators) for typable programs

Approach: First *smoothen* function using sigmoid with a coefficient k; then optimise expectation, enhancing accur step.

$$\underline{-0.5} \cdot (z+\theta)^2 + \sigma_k(z+\theta) + \underline{0.5} \cdot z^2$$

where

$$\sigma_k(x) \coloneqq \sigma\left(\frac{x}{\sqrt{k}}\right) = \frac{1}{1 + \exp\left(-\frac{x}{\sqrt{k}}\right)}$$

A Language and Smoothed Semantics for **Convergent Stochastic Gradient Descent**

Dominik Wagner and Luke Ong

y. M M M	Keep track of branching behaviour (fo and reparametrisations (for converge
ontinuous nd z of type oution.	 Type system enforces two restrictions: 1. in each branch, each z_i occurs at most transformation is affine 2. guards of conditionals do not contain p (untransformed) z Example: The running example can be rep (λy0.5 · y² + (if y < 0 then 0 else 1) + 0.5)
stribution is e distribution	Symbolic Operational Semantics [MOF
	$M \Downarrow_{\phi}^{\Psi_{<},\Psi_{\geq}} \mathcal{V}$ iff for θ , z such that for $\psi \in \Psi_{<}, \psi(\phi_{\theta}(z)) < \psi(\phi_{\theta}(z)) \geq 0$, it holds $\llbracket M \rrbracket (\theta, z) = \llbracket \mathcal{V} \rrbracket (\theta, z)$
$(\boldsymbol{\theta}, \mathbf{z})]$	Sound and complete view of branchinExample: $N \Downarrow_{Z \mapsto Z + \theta}^{\{y\}, \emptyset} = -0.5 \cdot y^2 + 0 + 0.5$ $N \Downarrow_{Z \mapsto Z + \theta}^{\emptyset, \{y\}} = -0.5 \cdot y^2 + 1 + 0.5$
	Smoothed Semantics
s (and	For accuracy coefficient $k \in \mathbb{N}$, $\llbracket M \rrbracket_k(\theta, \mathbf{z}) \coloneqq \sum_{M \Downarrow_{\phi}^{\Psi_{<}, \Psi_{\geq}} \mathcal{V}} \llbracket \mathcal{V} \rrbracket(\theta, \mathbf{z}) \cdot \prod_{\psi \in \Psi_{<}} \sigma_k(-\psi)$
accuracy racy in each	Adapt (backward mode) automatic dir to compute smoothing

or definition of smoothing) ence proof).

st once and its

parameters θ or

phrased as $N \equiv$ $\underline{.5} \cdot (y - \theta)^2) ((\lambda z. z + \theta) z)$ affine reparametrisation

PW21]

polynomials affine 0, and for $\psi \in \Psi_{>}$,

ng behaviour

 $0.5 \cdot (y - \theta)^2$ $0.5 \cdot (y - \theta)^2$

$$\psi(\phi_{m{ heta}}(\mathbf{z}))) \cdot \prod_{\psi \in \Psi_{\geq}} \sigma_k(\psi(\phi_{m{ heta}}(\mathbf{z})))$$

ifferentiation

Diagonalisation Gradient Descent

Suppose for each $k \in \mathbb{N}$, $f_k : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}$ is differentiable. We define a *diagonal stochastic gradient descent (DSGD)* sequence:

$$oldsymbol{ heta}_{k+1}\coloneqqoldsymbol{ heta}_k$$
 where $oldsymbol{z}_{k+1}\sim\mathcal{N}(oldsymbol{0},oldsymbol{\mathsf{I}}).$

 $f: \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}$. Let

 $g_{k}(oldsymbol{ heta})\coloneqq \mathbb{E}_{\mathsf{z}}[\mathit{f}_{k}(oldsymbol{ heta},\mathsf{z})]$

Abstract Convergence

Suppose the g_k and g are well-defined and differentiable. Suppose there exist $\{\theta_i \mid i \in \mathbb{N}\} \subseteq \Theta \subseteq \mathbb{R}^m$, L > 0 and $\epsilon > 0$ s.t. for all $k \in \mathbb{N}$ and $\theta \in \Theta$,

1. $abla_{ heta} g_k(oldsymbol{ heta}) = \mathbb{E}_{\mathsf{z}}[
abla_{ heta} f_k(oldsymbol{ heta}, \mathsf{z})]$ 2. $|g_{k+1}(\theta) - g_k(\theta)| < k^{-1-\epsilon} \cdot L$ 3. $\| \nabla g_k(\theta) - \nabla g(\theta) \|^2 < k^{-\epsilon} \cdot L$ **4.** $\mathbb{E}_{\mathsf{z}}[\|\nabla_{\theta} f_k(\theta, \mathsf{z})\|^2] < L$ **5.** $\|\mathbf{H} g_k(\theta)\| < L$ Then $\inf_{i \in \mathbb{N}} \mathbb{E}[\|\nabla g(\theta_i)\|^2] = 0.$

Instantiate f_k with $[M]_k$

Diagonalisation Gradient Descent for Programs

Let M be a term of type R with free variables θ and z of type R.

 $\boldsymbol{\theta}_{k+1} \coloneqq \boldsymbol{\theta}_{k} - \alpha_{k+1} \nabla_{\boldsymbol{\theta}} \llbracket \boldsymbol{M} \rrbracket_{k+1} \left(\boldsymbol{\theta}_{k}, \boldsymbol{\mathsf{z}}_{k+1} \right)$ where $\mathbf{z}_{k+1} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. are *satisfied*.

> Use (**DSGD**') to find stationary points of the optimisation problem.

References

[LYY18] Wonyeol Lee, Hangyeol Yu, and Hongseok Yang: Reparameterization gradient for non-differentiable models. NeurIPS 2018.

[MOPW21] Carol Mak, C.-H. Luke Ong, Hugo Paquet, Dominik Wagner: Densities of Almost Surely Terminating Probabilistic Programs are Differentiable Almost Everywhere. ESOP 2021.

 $- \alpha_{k+1} \nabla_{\boldsymbol{\theta}} f_{k+1}(\boldsymbol{\theta}_k, \mathbf{Z}_{k+1})$

Assume $\alpha_k = \Theta(1/k)$ and that the f_k converge (pointwise) to

 $g(oldsymbol{ heta})\coloneqq \mathbb{E}_{\mathsf{z}}[f(oldsymbol{ heta},\mathsf{z})]$

(unbiased) (uniform convergence) (gradient uniform convergence) ("variance" bounded) (Hessian bounded)

If $\Theta := \{\theta_i \mid i \in \mathbb{N}\}$ is bounded then the *conditions for convergence*

dominik.wagner@cs.ox.ac.uk

(DSGD')

(DSGD)