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Idealised Programming Language:
M ::= x | r | M + M | M ·M | if M < 0 then M else M | λy .M | M M

Problem Statement

discontinuous
argminθ Ez∼N (0,I) [

r
M

z
(θ, z)]

where M is a term of type R and has free variables θ and z of type
R, and N (0, I) is the multivariate standard normal distribution.

Find stationary points

Example: maximisation of ELBO where the variation distribution is
represented as a parameterised transformation of a noise distribution

Ez∼q(z) [log(p(φθ(z)))− log qθ(φθ(z))]

polynomials after simplification

Reparametrisation Gradient is Biased [LYY18]

Consider
M ≡ −0.5 · (z + θ)2 + (if z + θ < 0 then 0 else 1) + 0.5 · z2

Then
∇θ Ez∼N (0,1) [

q
M

y
(θ, z)] = −θ +N (−θ | 0,1)

6= −θ = Ez∼N (0,1) [∇θ
q
M

y
(θ, z)]

Vanishing gradient estimator does not imply stationarity!

Contribution: Provable convergence to stationary points (and
unbiased gradient estimators) for typable programs

Approach: First smoothen function using sigmoid with accuracy
coefficient k; then optimise expectation, enhancing accuracy in each
step.

−0.5 · (z + θ)2 + σk(z + θ) + 0.5 · z2

where

σk(x) := σ

(
x√
k

)
=

1

1 + exp
(
− x√

k

)

Keep track of branching behaviour (for definition of smoothing)
and reparametrisations (for convergence proof).

Type system enforces two restrictions:
1. in each branch, each zi occurs at most once and its

transformation is affine
2. guards of conditionals do not contain parameters θ or

(untransformed) z

Example: The running example can be rephrased as N ≡
(λy .−0.5 · y2 + (if y < 0 then 0 else 1) + 0.5 · (y − θ)2) ((λz. z + θ) z)︸ ︷︷ ︸

affine reparametrisation

Symbolic Operational Semantics [MOPW21]

polynomials
M ⇓Ψ<,Ψ≥

φ V
affine

iff for θ, z such that for ψ ∈ Ψ<, ψ(φθ(z)) < 0, and for ψ ∈ Ψ≥,
ψ(φθ(z)) ≥ 0, it holds

q
M

y
(θ, z) =

qVy
(θ, z).

Sound and complete view of branching behaviour

Example: N ⇓{y},∅z 7→z+θ −0.5 · y2 + 0 + 0.5 · (y − θ)2

N ⇓∅,{y}z 7→z+θ −0.5 · y2 + 1 + 0.5 · (y − θ)2

Smoothed Semantics

For accuracy coefficient k ∈ N,
q
M

y
k (θ, z) :=

∑
M⇓Ψ<,Ψ≥

φ V

qVy
(θ, z) ·

∏
ψ∈Ψ<

σk(−ψ(φθ(z))) ·
∏
ψ∈Ψ≥

σk(ψ(φθ(z)))

Adapt (backward mode) automatic differentiation
to compute smoothing

Diagonalisation Gradient Descent

Suppose for each k ∈ N, fk : Rm × Rn → R is differentiable. We
define a diagonal stochastic gradient descent (DSGD) sequence:

θk+1 := θk − αk+1∇θ fk+1(θk , zk+1) (DSGD)
where zk+1 ∼ N (0, I).

Assume αk = Θ(1/k) and that the fk converge (pointwise) to
f : Rm × Rn → R. Let

gk(θ) := Ez[fk(θ, z)] g(θ) := Ez[f (θ, z)]

Abstract Convergence

Suppose the gk and g are well-defined and differentiable.
Suppose there exist {θi | i ∈ N} ⊆ Θ ⊆ Rm, L > 0 and ε > 0 s.t.
for all k ∈ N and θ ∈ Θ,

1.∇θgk(θ) = Ez[∇θfk(θ, z)] (unbiased)
2. |gk+1(θ)− gk(θ)| < k−1−ε · L (uniform convergence)
3. ‖∇gk(θ)−∇g(θ)‖2 < k−ε · L (gradient uniform convergence)
4.Ez[‖∇θfk(θ, z)‖2] < L (“variance” bounded)
5. ‖H gk(θ)‖ < L (Hessian bounded)

Then inf i∈NE[‖∇g(θi)‖2] = 0.

Instantiate fk with
q
M

y
k

Diagonalisation Gradient Descent for Programs

Let M be a term of type R with free variables θ and z of type R.

θk+1 := θk − αk+1∇θ
q
M

y
k+1 (θk , zk+1) (DSGD’)

where zk+1 ∼ N (0, I).

If Θ := {θi | i ∈ N} is bounded then the conditions for convergence
are satisfied.

Use (DSGD’) to find stationary points of the
optimisation problem.
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