
Initial Limit Datalog: a New Extensible Class of
Decidable Constrained Horn Clauses

Toby Cathcart Burn Luke Ong Steven Ramsay Dominik Wagner

Abstract—We present initial limit Datalog, a new extensible
class of constrained Horn clauses for which the satisfiability
problem is decidable. The class may be viewed as a generalisation
to higher-order logic (with a simple restriction on types) of
the first-order language limit DatalogZ (a fragment of Datalog
modulo linear integer arithmetic), but can be instantiated with
any suitable background theory. For example, the fragment is
decidable over any countable well-quasi-order with a decidable
first-order theory, such as natural number vectors under compon-
entwise linear arithmetic, and words of a bounded, context-free
language ordered by the subword relation. Formulas of initial
limit Datalog have the property that, under some assumptions
on the background theory, their satisfiability can be witnessed
by a new kind of term model which we call entwined structures.
Whilst the set of all models is typically uncountable, the set
of all entwined structures is recursively enumerable, and model
checking is decidable.

I. INTRODUCTION

Constrained Horn Clauses (CHCs) are a class of formulas
that have been found to be especially suitable for tasks in
automated reasoning. They are the language of constraint logic
programming [1]. More recently, there has been a concerted
effort to exploit the class as a programming-language inde-
pendent basis for automatic program verification [2, 3].

CHCs are a liberalisation of the class of Horn formulas
in which, additionally, clauses may contain constraints drawn
from a specified first-order background theory1. This extension
preserves many of the good properties of the Horn format,
such as the existence of canonical models and the sufficiency
of SLD-style derivations, whilst allowing for the expression
of domain-specific knowledge in the form of assertions from
the background theory.

Unfortunately, this pleasing combination of expressivity and
semantic characterisation comes with an algorithmic cost. In
general, decidability of the satisfiability problem for a class
of CHC depends on the choice of background theory, and for
many theories that are typical in automated reasoning (e.g.
because they are decidable), the class of CHC is undecidable.
For example, [4] shows that not only is CHC over linear
integer arithmetic undecidable [5], but so too CHC over
complex, real or rational linear arithmetic. On the other hand,
it is easy to see that CHC over the theory of equality on a
finite set has decidable satisfiability.

1Note: in this work we will assume the background theory has a fixed
interpretation, as is common in the satisfiability-modulo-theories literature.

Since the most promising applications concern theories of
infinite structures, it becomes important to identify restrictions
on the format that both preserve its essential character and yet
guarantee decidability. In [4], a catalogue of (sub-recursive)
complexity results are derived concerning limitations placed
on the use of variables within clauses and the nature of
parameter passing.

An alternative approach, and the starting point for the
work in this paper, is the limit restriction of the language
limit DatalogZ, which was proposed in [6] as a foundation
for declarative data analysis. Limit DatalogZ can be viewed
as a language of first-order CHCs over the theory of linear
integer arithmetic, but with the following proviso: predicates
in limit DatalogZ (called limit predicates) are restricted so as
to capture only the minimum (or maximum) numeric values in
their unique integer parameter. This restriction ensures that the
satisfiability problem is decidable for this class of CHC, whilst
remaining expressive enough to describe important problems
in data analysis (in particular, one may still describe certain
kinds of recursively defined predicates over the integers).

One way to implement the limit predicate restriction is to
require that all predicates with an integer parameter are either
upwards or downwards closed with respect to that parameter.
We enforce this by the highlighted clauses in the examples
below, taken from [6].

The background theory of these examples is the combina-
tion of linear integer arithmetic and the theory of equality over
a finite set. We assume that the elements of this set can be
arranged into a linear order y1, y2, . . . , yk (which will differ
from example to example), described by two constraint for-
mulas (i.e. of the background theory) that we will abbreviate
FIRST(y1) and NEXT(yn, yn+1).

Example I.1 (Social networking). In this first example, the
finite set describes people who tweet and follow each other’s
tweets. Let us suppose we have a constraint formula2 (i.e. of
the background theory) abbreviated by TH(x,m), indicating
the retweet threshold. That is, asserting that a person x will
tweet a (hypothetical) message if at least m of those they
follow also tweet it. Suppose we have a constraint formula
FOLLOWS(x, y), describing when one individual x follows
the tweets of another y. The following clauses constrain a
proposition Tw x so that it holds if x tweeted. The proposition
Ntx ym holds if, out of the people at or before y (according
to the ordering on the set of people), at least m people that x

2One can also think more specifically of an intensional database predicate.978-1-6654-4895-6/21/$31.00 c©2021 IEEE

follows tweeted.

Ntx y 0← FIRST(y)

Ntx y 1← FOLLOWS(x, y) ∧ FIRST(y) ∧ Tw y

Ntx ym← Ntx y′m ∧ NEXT(y′, y)

Ntx y (m+ 1)← Ntx y′m ∧ FOLLOWS(x, y)

∧ NEXT(y′, y) ∧ Tw y

Nt x y m← m ≤ n ∧Nt x y n

Tw x← TH(x,m) ∧Ntx y n ∧m ≤ n

Example I.2 (Path counting). In this second example, the
finite set describes the vertices of a directed acyclic graph
and the clauses can be used to reason about the number of
paths between two nodes. We assume a constraint formula
EDGE(x, y) indicating that there is an edge from x to y.

Np′ x y z 0← FIRST(z)

Np′ x y z m← FIRST(z) ∧Np z ym ∧ EDGE(x, z)

Np′ x y z m← NEXT(z′, z) ∧Np′ x y z′m

Np′ x y z (m+ n)← NEXT(z′, z) ∧Np′ x y z′m

∧ EDGE(x, z) ∧Np z y n

Np′ x y z m← m ≤ n ∧Np′ x y z n

Npx ym← Np′ x y z m

Npxx 1← true

Npx ym← m ≤ n ∧Npx y n

Here, Np′ x y z m holds if there are at least m paths of the
form x,w, · · · , y where w occurs at or before z according to
the linear ordering of nodes. Finally, Npx y n holds if there
are at least n paths from x to y.

Contributions

In this paper, we introduce a significant yet decidable exten-
sion of limit DatalogZ which we call initial limit Datalog. Our
language encompasses generalisations of the original work [6]
along two dimensions and we define a new class of models:
(i) Parametrisation with respect to a wide range of back-
ground theories. We give a number of abstract conditions
on the character of the background theory which, if satisfied,
guarantee decidability of the language (Thm. III.4). Instances
of particular note include all countable well-quasi orders
(WQOs) with a decidable first-order theory. This contains, for
example, the theory of tuples of naturals under component-
wise ordering, allowing the use of predicates with more than
one natural number argument.
(ii) (Un)decidability at higher type. We show that the most
natural extension of limit DatalogZ to higher-order logic, in
which clauses can define predicates of arbitrary higher type,
already has undecidable satisfiability (Thm. III.7). Through a
careful analysis of the interaction between the typing discipline
and model construction, we design a restriction on the types of

predicates (automatically satisfied by all first-order predicates)
that we call initial. We show that the resulting language, initial
limit Datalog, regains decidable satisfiability (Thm. IV.3).
(iii) A recursively enumerable set of candidate models. The
solution space for a given set of clauses is typically un-
countable, because predicates are interpreted as subsets of
the domain. A key step in proving our decidability results
is to show that, remarkably, one can restrict attention to a
recursively enumerable class of candidate models. To handle
the higher-order case, we introduce a new representation which
we call entwined structures, in which the interpretation of a
higher type may depend on the interpretation of particular
terms of lower types. They have many useful properties, and
their conception is sufficiently general that we believe they
may be of use for obtaining similar results beyond the scope
of this paper.

Initial limit Datalog

The setting for our language is the fragment of higher-
order logic known as higher-order constrained Horn clauses
(HoCHC) [3, 7]. Higher-order constrained Horn clauses allow
for the description of predicates of higher-types (i.e., whose
subjects may themselves be predicates). Such predicates can
be described by clauses built from terms of the simply typed λ-
calculus when equipped with the appropriate logical constants.
As in [3, 7], we forgo the use of explicit abstraction to simplify
the Horn clause format.

As a first example, we demonstrate in Ex. I.3 and Ex. I.4
how the first-order limit DatalogZ examples above share a
common structure which can be factored out into a higher-
order recursion combinator Iter of the following type:

Iter : S → Z→ (S → Z→ o)→ o

Throughout (the examples of) this paper, we will use S
to denote the type of a fixed finite set, o as the type of
propositions and, by some abuse, Z as the type of the integers.
This combinator can be defined as follows:

Iter y n p← FIRST(y) ∧ p y n
Iter y n p← NEXT(y′, y) ∧ p y k ∧ Iter y′mp ∧ n = k +m

Iter y n p← n ≤ m ∧ Iter ymp

The proposition Iter y n p describes iteration over a generic
sequence of data items in S from the first item until item y,
evaluating the predicate p : S → Z → o on each item and
summing the associated integers to n. As in the first-order
case, we must implement the limit predicate restriction, so
we include the shaded clause to guarantee the (in this case)
downwards closure of its integer argument.

Example I.3 (Refactoring social networking). Using Iter, the
whole of the social network example Ex. I.1, in which the data

2

items are users, can be encoded more concisely as:

Inc?x y n← n = 0 ∨
(
FOLLOWS(x, y) ∧ Tw y ∧ n = 1

)
Inc?x y n← n ≤ m ∧ Inc?x ym

Tw x← TH(x,m) ∧ Iter y n (Inc?x) ∧m ≤ n

The predicate Inc?, which satisfies the limit restriction,
expresses the domain specific reasoning that happens on each
iteration, namely that the number of tweeters will either be
increased by 0, or by 1 in case x follows some y who tweets
the message.

Example I.4 (Refactoring path counting). The path counting
example Ex. I.2 uses a similar iterative structure. The whole
example can be rewritten as:

NpExtx y z m←
(
Np z ym ∧ EDGE(x, z)

)
∨m = 0

NpExtx y z m← m ≤ n ∧NpExtx y z n

Npx ym← Iter z m (NpExtx y) ∨ (x = y ∧m = 1)

Npx ym← m ≤ n ∧Npx y n

In this case, the second and fourth clauses ensure that the
respective predicates adhere to the limit restriction.

Example I.5 (Generic query). An orthogonal benefit of
higher-type predicates is to allow the expression of higher-
order properties (e.g. properties of the form for all relations
r...). Returning to Ex. I.1, the follows relation was fixed by
some first-order constraint formula (or intensional database
predicate) FOLLOWS(x, y). Using predicates of higher type,
we can instead parametrise the mutually recursive predicates
Nt and Tw by an arbitrary follows relation f of type
S → S → o:

Ntx y 0 f ← FIRST(y)

Ntx y 1 f ← f x y ∧ FIRST(y) ∧ Tw y f

Ntx ymf ← Ntx y′m ∧ NEXT(y′, y)

Ntx y (m+ 1) f ← Ntx y′m ∧ f x y
∧ NEXT(y′, y) ∧ Tw y

Ntx ymf ← m ≤ n ∧Ntx y n f

Tw x f ← TH(x,m) ∧Ntx y n f ∧m ≤ n

This allows us to check that a property of the system holds
independently of who follows whom. For example, according
to Kaminski et al.’s formulation, nobody will tweet the mes-
sage if we fix all retweet thresholds at 1. To verify this, we
set TH(x,m) to the constraint formula m = 1 and decide
satisfiability of the clauses extended with the following goal:

false ← Tw x f

From the satisfiability of the clauses, we can deduce that there
does not exist a choice of an individual x and a followers
relation f for which the message would be tweeted.

Examples I.3 to I.5 are not limit DatalogZ problems, but
they are problems of our generalisation: initial limit Datalog.

As well as admitting the definition of higher-order relations, in
place of the theory of integer linear arithmetic we allow for the
theory of any preordered set W satisfying certain conditions.

Initial limit Datalog problem and satisfiability: Hence-
forth let W be a preordered set with a decidable first-
order theory, such that every upwards closed subset of W is
definable in the theory. We consider relational types generated
from W and any finite set S (abusing notation by naming the
types after their interpretations).

An initial limit Datalog problem is a (finite) set Γ of
HoCHC clauses over W and S such that for every predicate
X : ρ in the signature, with ρ = σ1 → · · · → σk → o of
order n (say):

(i) ρ is initial, meaning σj = W for at most one j, and
if there is such a j then for all i < j, order(σi) <
order(σj → · · · → σk → o); moreover each σi is S,
or W , or initial.

(ii) if σj = W for some j, then Γ contains the limit clause

X z x z′ ← x ≤ y ∧X z y z′

(and ρ is called an active type).
The satisfiability problem for initial limit Datalog asks:
given an initial limit Datalog problem Γ, is it satisfiable
(modulo the theory of W and S)?

We show in Sec. III-B that a naïve extension to higher order
leads to undecidability, but the forgoing examples and those
we will present in the sequel all obey a certain discipline
in the way that the background type W and higher types
interact. This is captured by the initial restriction, (i), which
requires that the types of terms that may be captured by a
partial application are of strictly lower order than the partial
application itself. It is easy to verify that this condition holds
for the type of Iter and one can also see it in the types of our
higher-order generalisation of Nt and (trivially) Tw:

Tw : S → (S → S → o)→ o

Nt : S → S → Z→ (S → S → o)→ o

Note that all formulas of limit DatalogZ already satisfy
requirements (i) and (ii); and Z, under the theory of linear
integer arithmetic, is an appropriate instantiation of W .

Parametrisation of initial limit Datalog by the type W allows
for a variety of interesting background structures beyond
integer linear arithmetic. For example, any countable well-
quasi-ordering with a decidable background theory (which
must include constants for each element of the structure)
satisfies the requirements on W , such as:

a. Tuples of natural numbers, under componentwise order-
ing with the theory of linear arithmetic on components.

b. Words of a bounded, context-free language, under the
subword order [8].

c. Basic process algebra under the subword order. BPA is
an automatic structure, and so, has a decidable first-order

3

theory. There are other examples in the same vein, e.g.,
communicating finite-state machines [9].

The following example is a higher-order instance of initial
limit datalog where the preorder W is the WQO of tuples
of natural numbers, with the theory of linear arithmetic on
components. Notice that in this case, there may be multiple
consecutive parameters of type N in a predicate.

Example I.6 (Integration). Monotone decreasing functions
N → N can be represented by downwards closed subsets
of N × N: such a function f is uniquely identified by
{(x, y) : y < f(x)}. Higher-order initial limit Datalog allows
us to define a predicate which computes integrals3 over such
functions.

Integral : N→ N→ (N→ N→ o)→ o

Integral tot bd f ← tot = 0

Integral tot bd f ← tot = x+ y + 1 ∧ Integralx (bd + 1) f

∧ f bd y
Integral tot bd f ← tot ≤ s ∧ bd ≤ c ∧ Integral s c f

Exp : N→ N→ o

Expmn← m = 0 ∧ n < 128

Expmn← Expx y ∧m = x− 1 ∧ n+ n < y

Expmn← m ≤ x ∧ n ≤ y ∧ Expx y

false ← Integral 255 0 Exp

In the canonical interpretation, Exp represents the function
defined by f(m) = b27−mc and Integral tot bd f is true if
tot is less than or equal to the integral (infinite sum) of the
monotone function represented by f from bd to ∞. (Thus
max{tot | ‘Integral tot 0 Exp’ holds} = 255.)

This example is unsatisfiable (there is no consistent inter-
pretation of Integral and Exp where Integral 255 0 Exp is
false), but if the constant 255 is changed to 256, it becomes
satisfiable.

Entwined structures

The key innovation of our decidability proof is the construc-
tion (given Γ) of a set of candidate models, called entwined
structures, which satisfy a number of pleasing properties:
(P1) The set of entwined structures is r.e.
(P2) In each order-n entwined structure, the denotation of

each (initial) relational type (that occurs in Γ) of order
less than n is finite.

(P3) There is an algorithm that checks if a given entwined
structure models Γ.

(P4) There is an entwined structure that models Γ if and only
if Γ is satisfiable.

3Integral can equivalently be typed as N× N→ (N× N→ o)→ o.

Entwined structures are built up by induction on order,
via a bootstrapping process. Their name reflects the interplay
between the interpretation of terms and types during this
process: the interpretation of a type of order-n (the set from
which the interpretations of order-n predicate symbols are
chosen) can only be given once the interpretation of the
relevant predicate symbols of lower-order types has already
been fixed. A family of structures {Bn}n∈ω , indexed by
(order) n, is entwined, if B0 is the structure on the empty
signature; and in each Bn:

• Predicate symbols in Bn−1 (those of the foreground
signature of order < n) are interpreted as per Bn−1.

• Each predicate of an order-n active type ρ = σ1 → · · · →
σk → o is interpreted as a function (in the set-theoretic
[BnJσ1K → · · · → BnJσkK → B]) monotone in the W -
typed argument.

For types ρ = τ → σ of order less than n, BnJρK is the full
function space [BnJτK → BnJσK] if that is finite, otherwise
it is the least collection of relational functions allowing it to
support the interpretations of predicates assigned by Bn−1.
This results in something similar to a term model. We cannot
use the term model because there can be infinitely many terms
and therefore uncountably many interpretations of higher-order
predicates, but our decidability proof rests on enumeration.

In an unrestricted setting, it would not make sense to
interpret all the order-(n− 1) active predicates (i.e. predicates
of active type) before interpreting the order-n predicates,
because an order-(n − 1) active predicate may be passed an
argument involving a predicate of order-n.

However, thanks to the initial type restriction, if an order-n
term N of an active type has an order-m subterm M with
m > n, then M is a subterm of some L (another subterm of
N) of type σ (say) whose order is less than n. Since BnJσK
is finite (P2), we don’t need to know all possible values of M
to know all possible values of N .

We show decidability (Thm. IV.3) by exhibiting two semi-
decision procedures—one for proving the existence of a
model, and the other for non-existence—and running them in
parallel. The former semi-decision procedure is an immediate
consequence of (P1), (P3) and (P4). The latter is an application
of the semi-decidability of HoCHC unsatisfiability, via a refut-
ationally complete resolution proof system (Γ is unsatisfiable
if, and only if, there is a resolution proof of ⊥ from Γ) [7].

Outline: We begin with some technical preliminaries in
Sec. II before introducing (higher-order) limit Datalog in
Sec. III. We give a proof that the first-order fragment has a
decidable satisfiability problem and show that satisfiability in
general is undecidable. In Sec. IV we present initial restriction
on types, and prove that the initial limit Datalog satisfiability
problem is decidable. In Sec. V, we give examples of how first-
order limit Datalog problems can be used with the background
theory of tuples of naturals, and other well-quasi orderings
(WQOs) with a decidable first-order theory. After a review of
related work (Sec. VI), we conclude and briefly discuss some

4

further directions.

II. TECHNICAL PRELIMINARIES

This section introduces a restricted form of higher-order
logic (Sec. II-A), higher-order constrained Horn clauses
(HoCHCs) (Sec. II-B) and their proof system (Sec. II-C).

A. Relational higher-order logic

1) Syntax: For a fixed set I (intuitively the types of
individuals), the set of argument types, relational types, 1st-
order types and types (generated by I) are defined by mutual
recursion as follows

Argument type τ ::= ι | ρ
Relational type ρ ::= o | τ → ρ

1st-order type σFO ::= ι | o | ι→ σFO

Type σ ::= ρ | σFO,

where ι ∈ I. We sometimes abbreviate function types τ1 →
· · · → τn → σ to τ → σ. Intuitively, o (where o /∈ I) is
the type of the truth values (or Booleans). The types σFO are
exactly those of the form ι→ ι or ι→ o, i.e. each argument
is of some type ιi ∈ I. Moreover, each relational type has the
form τ → o. We define order(τ1 → · · · → τn → σ) = n if σ
is ι or o.

A type environment (typically ∆) is a function mapping
variables (typically x, y, z) to argument types; for x ∈
dom(∆), we write x : τ ∈ ∆ to mean ∆(x) = τ . A signature
(typically Σ,Ξ) is a set of distinct typed symbols c : σ, where
c 6∈ dom(∆). A signature Σ is 1st-order if σ is 1st-order for
all c : σ ∈ Σ. We often write c ∈ Σ if c : σ ∈ Σ for some σ.

The set of Σ-pre-terms is given by M ::= x | c | MM
where c ∈ Σ. We assume that application associates to the left,
and write M N for M N1 · · ·Nn, assuming implicitly that M
is not an application.

The typing judgement ∆ `M : σ is defined by

x ∈ dom(∆)

∆ ` x : ∆(x)
c : σ ∈ Σ
∆ ` c : σ

∆ `M1 : σ1 → σ2 ∆ `M2 : σ1

∆ `M1M2 : σ2

We say that M is a Σ-term of type σ if ∆ ` M : σ. A Σ-
term is a 1st-order Σ-term if the symbols in its construction
are restricted to symbols c : σFO ∈ Σ and variables x : ι ∈ ∆.
Remark II.1. It follows from the definitions that each term
∆ ` M : ι → ι can only contain variables of type ιi and
constants of non-relational 1st-order type (and contains no
logical symbols, a similar approach is adopted in [10]).

We define a Σ-formula F by

F ::= M | F ∨ F | F ∧ F | ¬F

where M is any Σ-term of type o. For a Σ-term or Σ-formula
M and Σ-terms N1, . . . , Nn and variables x1, . . . , xn that sat-
isfy ∆ ` Ni : ∆(xi), the substitution M [N1/x1, . . . , Nn/xn]
is defined in the standard way.

2) Semantics: There are two classic semantics for higher-
order logic: standard and Henkin semantics [11]. In this paper,
we will not be concerned with the latter, but the notion of
frame is useful. Assume, for each ι ∈ I, an associated set Dι.
Formally, a frame F assigns to each type σ a nonempty set
FJσK such that

(i) FJιK := Dι for each ι ∈ I
(ii) FJoK := B := {0, 1}

(iii) For each σ1 → σ2, FJσ1 → σ2K ⊆ [FJσ1K→ FJσ2K]

where [U → V] is the set of functions from (sets) U to V .
Remark II.2. Unlike [7], we do not distinguish pre-frame and
frame. Because λ-abstractions are not part of the HoCHC
syntax here, the (weak) comprehension axiom in [7, p. 3] does
not apply.

Example II.3 (Standard frame). We define the standard frame
S recursively by SJoK := B; SJιK := Dι for ι ∈ I; and

SJτ → σK := [SJτK→ SJσK]

Let Σ be a signature, and F be a frame. A (Σ,F)-structure
A assigns to each c : σ ∈ Σ an element cA ∈ FJσK and for
convenience we set AJσK := FJσK for types σ. A (∆,F)-
valuation α is a function such that for every x : τ ∈ ∆,
α(x) ∈ FJτK. For a (∆,F)-valuation α, variable x and r ∈
FJ∆(x)K, α[x 7→ r] is defined in the usual way.

Let A be a (Σ,F)-structure and let α be a (∆,F)-valuation.
The denotation AJMK(α) of a Σ-term M with respect to A
and α is defined recursively by

AJxK(α) := α(x) AJcK(α) := cA

AJM1M2K(α) := AJM1K(α)
(
AJM2K(α)

)
For each term ∆ ` M : σ, we have AJMK(α) ∈ AJσK.
(We will write AJMK(α) as AΣJMK(α) when we need to be
explicit about the signature of the Σ-terms M .)

Example II.4 (LIA). In this paper, many examples will use the
signature of linear integer arithmetic4 (LIA) (aka Presburger
arithmetic) ΣLIA := {0, 1,+,−, <,≤,=, 6=,≥, >} and its
standard model ALIA.

B. Higher-order constrained Horn clauses (HoCHC)

We explicitly distinguish symbols of the background (bg)
theory from those—in the foreground (fg)—which are con-
strained by clauses. This distinction enables a certain semantic
separation required by a model construction (Def. IV.5), which
is crucial to our decidability result (Thm. IV.3). 5

Assumption 1. Henceforth we fix a 1st-order signature Σbg,
and a (Σbg,S)-structure A, and a finite signature Σfg disjoint

4with the usual types 0, 1 : ι; +,− : ι → ι → ι and / : ι → ι → o
for / ∈ {<,≤,=, 6=,≥, >}; and we use the common abbreviation n for
1 + · · ·+ 1︸ ︷︷ ︸

n

, where 1 ≤ n ∈ N

5Using notations in Def. IV.5 and Lem. IV.8, take ≤ ∈ Σbg. If ≤A ∈
FJZ→ Z→ oK then FJZ→ oK must be infinite, contradicting Lem. IV.8.

5

from Σbg with only predicate symbols (of a relational type),
typically X,Y, P and R and their variants. We will write such
a pair of signatures as Σ = (Σbg,Σfg).

Intuitively, Σbg and A correspond to the language and
interpretation of the background theory, e.g. ΣLIA together
with its standard model ALIA. In particular, we (only) consider
background theories with a single model.

Next, we introduce higher-order constrained Horn clauses
and their satisfiability problem [3].

Definition II.5. By atom, we mean background atom or
foreground atom.

(i) A background atom is a 1st-order Σbg-term of type o.
(ii) A foreground atom is a Σfg-term of type o.

Note that a foreground atom has one of the following forms:
(i) RM where R ∈ Σfg, or (ii) xM .

We use ϕ and A (and variants thereof) to refer to back-
ground atoms and (general) atoms, respectively.

Definition II.6 (HoCHC). (i) A goal clause (typically G)
is a disjunction ¬A1 ∨ · · · ∨ ¬An, where each Ai is an
atom. We write ⊥ to mean the empty (goal) clause.

(ii) If G is a goal clause, R ∈ Σfg and the variables in x are
distinct, then G ∨Rx is a definite clause.

(iii) A higher-order constrained Horn clause (HoCHC) is a
goal or definite clause.

Throughout the document, we will often write a clause
¬A1 ∨ · · · ∨ ¬An ∨Rx as Rx← A1 ∧ · · · ∧An.

Next we give an example of HoCHCs from Sec. I, explicitly
listing the types involved and illustrating the structures.

Example II.7 (A system of HoCHCs). Let Σbg = ΣLIA ∪
{=S} and Σfg = {Iter : S → Z → (S → Z → o) →
o, Inc? : S → S → Z → o,Tw : S → o} and let ∆ be a
type environment satisfying ∆(m) = ∆(n) = ∆(k) = Z and
∆(x) = ∆(y) = ∆(y′) = S and ∆(p) = S → Z → o. The
system consists of the HoCHCs in Ex. I.3, and the preceding
three that define Iter.

A Σ-formula is a formula where each term is either a Σfg-
term or a 1st-order Σbg-term. Let F be a frame that agrees
with the standard frame S on the base types I. Let B be
a (Σfg,F)-structure and let α be a (∆,F)-valuation. The
definition of the denotation BJF K(α) of a Σ-formula F with
respect to B and α is defined recursively by

BJMK(α) :=

{
AΣbgJMK(α1) if M a 1st-order Σbg-term
BΣfgJMK(α) if M a Σfg-term

BJF ∧GK(α) := min(BJF K(α),BJGK(α))

BJF ∨GK(α) := max(BJF K(α),BJGK(α))

BJ¬F K(α) := 1− BJF K(α)

where α1 is taken to be some (∆,S)-valuation that agrees
with α on the elements of ∆ of type ι. The choice of such α1

does not matter because it is only used to interpret 1st-order
Σbg-formulas, which contain no variables from ∆ that do not
have type ι for some ι ∈ I.

For Σ-formulas F , we write B, α |= F if BJF K(α) = 1,
and B |= F if B, α′ |= F for all α′. We extend |= in the usual
way to sets of formulas.

Definition II.8. Let Γ be a set of HoCHCs, and suppose F
is a frame which agrees with S on I.

(i) Γ is (A,F)-satisfiable if there exists a (Σfg,F)-structure
B such that B |= Γ.

(ii) Γ is A-satisfiable (also called A-standard-satisfiable) if
it is (A,S)-satisfiable.

Whilst the notion of (A,F)-satisfiability may seem ob-
scure, it is sometimes easier to construct (Σfg,F)-structures
(cf. Lem. IV.11); and for certain F , A-satisfiability implies
(A,F)-satisfiability (cf. Lem. IV.12).

Definition II.9. A program is a finite set of definite clauses.

Remark II.10. (i) Under the definition of satisfiability, a
program can be seen as a conjunction of clauses, universally
quantified over variables in ∆.

(ii) It is often convenient to write logically equivalent
formulas such as X x ← ∃y.Y x y ∨ Z x instead of {X x ∨
¬Y x y, X z ∨¬Z z}. We may even write the bodies of such
formulas as existentially quantified formulas, over variables
that do not appear in the head.

(iii) If Σbg contains a predicate interpreted by A as equality
(as with ΣLIA and ALIA), then we may write terms of integer
type inside foreground atoms. For example X (x + y + 5) is
equivalent to X z ∧ (z = x+ y + 5)

(iv) Every satisfiable set of clauses Γ has, in each frame,
a canonical model B which arises by saturating under all
immediate consequences [7, Thm. 23]. In the higher-order
setting, this model may not be least wrt inclusion, but for
any goal clause G we have: Γ ∪ {G} satisfiable iff B |= G.

C. Resolution proof system

We use a simple resolution proof system [7] consisting
of only two rules: (i) a higher-order version of the usual
resolution rule [12] between a goal clause and a definite
clause (thus yielding a goal clause) and (ii) a rule to refute
certain goal clauses which are not satisfied by the model of
the background theory (similar to [13]).

Resolution
¬RM ∨G G′ ∨Rx

G ∨
(
G′[M/x]

)
Refutation ¬x1M1 ∨ · · · ∨ ¬xmMm ∨ ¬ϕ1 ∨ · · · ∨ ¬ϕn

⊥

With the latter rule applicable only there exists a valuation
α such that A, α |= ϕ1 ∧ · · · ∧ ϕn. Since variables are
implicitly universally quantified, we may assume x1 · · ·xm are
interpreted as (ȳ 7→ false). The rules must be applied modulo

6

renaming of (free) variables; we write Γ′ `A Γ′ ∪ {G} if G
can be thus derived from the clauses in Γ′ using the above
rules and `∗A for the reflexive, transitive closure of `A.

Theorem II.11 (Soundness and Completeness [7]). Let Γ be
a set of HoCHCs. Then Γ is A-unsatisfiable if, and only if,
Γ `∗A {⊥} ∪ Γ′ for some Γ′.

It follows that a set of HoCHCs is A-satisfiable if, and only
if, it cannot be refuted by the proof system.

Consequently, the resolution proof system gives rise to a
semi-decision procedure for the (standard) A-unsatisfiability
problem provided the consistency6 of conjunctions of atoms
in the background theory is semi-decidable.

III. HIGHER-ORDER LIMIT DATALOG

In this section, we describe the limit restriction on HoCHC
programs. We discuss the first-order fragment with this re-
striction, showing in Sec. III-A that its satisfiability problem
is decidable. Then, in Sec. III-B, we show that this does
not hold for higher-order problems, motivating the restrictions
described in the rest of this paper.

To begin, we need some properties of the background
theory, so we extend Assumption 1 by

Assumption 2. Henceforth fix some set W , a 1st-order
signature ΣW and a (ΣW ,S)-structure AW such that the first-
order theory of (ΣW ,AW) is decidable, ≤ ∈ ΣW , ≤AW is
a preorder on W , and for each upset X (i.e. a subset of W
such that if x ∈ X and x ≤AW y then y ∈ X), there is a
ΣW -formula ϕ(x) which expresses membership of X .

Moreover fix some finite set S. We strengthen Assumption 1
by asserting that:

• Σbg := ΣW ∪ {=S : S → S → o} ∪ {s : S | s ∈ S}
• cA := cAW if c : σ ∈ ΣW ; sA := s if s ∈ S; and (=S)A

is the standard equality between elements of S.

Note that the constraints on W imply that there are count-
ably many upsets. Examples of such structures include the
integers with ALIA (the upsets are either Z, ∅ or {x : x ≥ k}
for some k ∈ Z, each of which can easily be described by a
formula) and any countable well-quasi-ordering (WQO) with
a decidable background theory (for example, tuples of naturals
under component-wise ordering also with the theory of linear
integer arithmetic). Also note that any predicate on S can be
expressed in terms of =S , so our examples may freely make
use of other predicates.

Recall that a well-quasi-ordering (WQO) [14] is a quasi-
order (W,≤) such that every infinite sequence w1, w2, · · ·
contains an increasing pair: wi ≤ wj for some i < j. To see
that all upsets of a countable WQO (W,≤) are expressible,
note that any upset X ⊆ W has a finite number of minimal
elements m1, · · · ,mn (say), hence X can be described as
{w ∈W :

∨n
i=1 w ≥ mi}. Unfortunately, this does mean that

6i.e. whether there exists a valuation α such that A, α |= ϕ1 ∧ · · · ∧ ϕn

all elements of W must be constants in background theory,
which makes it harder to obtain decidability (for example, the
subword order is a WQO, but with constants, even the ∃-theory
becomes undecidable [8, 15]).
Remark III.1. Note that the converse of a preorder is another
preorder, and upsets under one are downsets (the complements
of upsets) under the other. This means that if Assumption 2
holds for a relation, it also holds for its converse. We will make
use of this by using upwards closed predicates in the definition
below and in the proofs for technical convenience, despite the
examples in Sec. I using downwards closed predicates.

Definition III.2. (i) An (upwards) limit Datalog problem
Γ is a finite set of HoCHC clauses over a signature Σ =
(Σbg,Σfg), compatible with Assumptions 1 and 2, such that
for each X : ρ ∈ Σfg, ρ contains at most one argument of type
W , and if ρ = τ1 → . . .→ τn → W → τn+1 → . . . τn+m →
o then Γ contains a limit clause:

X z x z′ ← y ≤ x ∧X z y z′

writing z and z′ for z1 . . . zn and zn+1 . . . zn+m respectively.
(ii) A first-order limit Datalog problem Γ is a limit Datalog

problem where for each X : ρ ∈ Σfg, it is the case that
ρ ∈ σFO, and no atom that occurs in Γ is headed by a variable.

(iii) The satisfiability problem for limit Datalog asks: given
a limit Datalog problem Γ, is it A-satisfiable?.

A key idea of limit Datalog is that predicates with W -typed
arguments must be interpreted as sets that are closed upward
with respect to that argument. Consequently, a proposition
X z y z′ asserts only that X holds of “at least y” (i.e., X
is a min-predicate in the sense of [6]).

First-order limit DatalogZ: [6] describe first-order limit
DatalogZ which is first-order limit Datalog over linear integer
arithmetic. Examples of this (Examples I.1 and I.2) are given
in Sec. I.
Remark III.3. [6] also allow predicates defining finite sets of
integers; and both min- and max-predicates; and multiplication
by constants, and by integers from fixed finite sets. They
show that a limit DatalogZ problem with these features can
be transformed into one without them.

First-order limit DatalogZ is motivated by aggregation in
declarative data analysis, which is typified by its requirements
for recursion and linear integer arithmetic. In declarative data
analysis, the emphasis is on giving a specification of the
required output rather than instructions on how to achieve it.
Such an analysis is enabled by a declarative language, and
experience suggests that support for high-level programming
over collection types (e.g. list comprehensions, map, reduce)
is particularly beneficial [16]. Consequently, a higher-order
foundation, such as HoCHC, may be particularly appropriate.

Of course higher-order programming is most important
for larger codebases where it can be reused many times,
but Examples I.3 and I.4 show that already the (first-order)

7

examples given in [6] have a shared structure that can be
factored out using a higher-order combinator.

A. Decidability at order 1

A key result of [6] is that the decision problem for the first-
order language is decidable. We give an alternative proof of
this theorem extended to first-order limit Datalog (allowing for
structures other than linear integer arithmetic) which is helpful
when understanding similar proofs in the sections that follow.

Theorem III.4. The satisfiability problem for first-order (up-
wards) limit Datalog is decidable.

Proof. Take a first-order limit Datalog problem Γ. It follows
from Def. III.2 that for any (Σfg,S)-structure B such that
B |= Γ, predicate X : Sn →W → Sm → o ∈ Σfg, and tuples
of constants s, s′ ⊆ S, the set

U = {w ∈W | BJX sx s′K([x 7→ w]) = 1}

is upwards closed. By Assumption 2, there exists a 1st-order
formula ϕX,s,s′(x) such that

U = {w ∈W | AW JϕX,s,s′(x)K([x 7→ w])}.

As there are finitely many predicates, finitely many tuples of
elements of S and countably many such formulas ϕ, we have
an r.e. set of candidate models. Given a (Σfg,S)-structure B
of this form, we may ground all instances of variables from
S, then substitute formulas ϕX,s,s′ as appropriate, removing
all instances of predicate symbols. Since the 1st-order theory
of (W,AW) is decidable, we can decide if B |= Γ.

If Γ is satisfiable, we can find such a structure by enumer-
ation. If not, then resolution (Thm. II.11) can prove that.

Corollary III.5. The satisfiability problem for first-order
downwards limit Datalog is decidable.

Proof. Although the above proof covers upwards limit Data-
log, it only relies on the fact that upwards closed sets are
expressible as 1st-order formulas. Since the complement of
every downwards closed set D is an upwards closed set U ,
D is described by the negation of the formula describing U .
Thus the proof also holds for downwards limit Datalog.

B. Undecidability in general

Unlike the first-order case, higher-order limit Datalog in
general is undecidable7, which can be proved by demonstrating
that multiplication, hence Diophantine equations, is definable.

The idea is to use a pair of terms of type Z → o to
represent an integer. Fix a higher-order limit DatalogZ program
Γ and let B be its canonical model. For an integer k, we
write J(M,N)K ≡ k just if BJMK = {x : x ≥ k} and
BJNK = {x : x ≥ −k}. This ensures that, for any n ∈ Z,

7The proof given here covers integers with linear integer arithmetic. A
variant works for naturals, but higher-order limit Datalog is not undecidable
for all structures (W,AW).

BJM n ∧N (−n)K = 1 iff n = k. Then we say that a partial
function f : Zm → Z is definable in Γ just if there exist two
closed terms M1 and M2 of type

(Z→ o)→ · · · → (Z→ o)︸ ︷︷ ︸
2m-times

→ (Z→ o)

such that: if for each i ∈ {1, . . . ,m}, J(Pi, P ′i)K ≡ ki then

J(M1 P1 P
′
1 · · ·Pm P ′m,M2 P1 P

′
1 · · ·Pm P ′m)K

≡ f(k1, . . . , km).

Example III.6 (Addition). Consider the following program
which defines addition and the constant 5.

Add1,Add2 : σ → σ → σ → σ → Z→ o

I51, I52 : σ where σ = Z→ o

Add1 f1 f2 g1 g2 x

← f1 y ∧ f2 (−y) ∧ g1 z ∧ g2 (−z) ∧ x ≥ y + z

Add2 f1 f2 g1 g2 x

← f1 y ∧ f2 (−y) ∧ g1 z ∧ g2 (−z) ∧ x ≥ −(y + z)

I51 x← x ≥ 5

I52 x← x ≥ −5

In the canonical model of this program,

Add1 I51 I52 I51 I52 x ∧Add2 I51 I52 I51 I52 (−x)

would hold exactly when x = 10. This means that the
pair of partially applied functions Add1 I51 I52 I51 I52 and
Add2 I51 I52 I51 I52 can be used as arguments to other func-
tions; for example

Add1 (Add1 I51 I52 I51 I52) (Add2 I51 I52 I51 I52) I51 I52 x

would hold for x ≥ 15.

In [?], we give another example of how functions may be
composed, and recursion can work, by defining multiplication.
With this we can define a goal clause corresponding to any Di-
ophantine equation, in such a way that the program as a whole
is satisfiable iff the equation has a solution. Consequently:

Theorem III.7 (Undecidability). The satisfiability problem for
higher-order limit DatalogZ is undecidable.

Proof. Since solvability of Diophantine equations is undecid-
able [?], so is the problem of determining if a higher-order
limit DatalogZ problem is satisfiable.

IV. INITIAL LIMIT DATALOG

In this section, we prove Thm. IV.3, which says that a
particular fragment of higher-order limit Datalog is decidable.
The proof follows the same strategy as that of Thm. III.4. The
key difference occurs when we enumerate candidate models;
even though we can restrict the first-order predicates to an
enumerable set, there are still uncountably many inhabitants
of higher-order types under standard semantics.

8

To work around this, first note that there are finitely many
predicate symbols. If these were the only higher-order terms,
we would be fine since Thm. II.11 can be seen as saying that
satisfiability does not depend on the behaviour of predicates on
elements of higher-order function spaces that don’t correspond
to terms. However, terms can contain arbitrarily deeply nested
subterms, as seen in Ex. III.6 (and used in the proof of
undecidability). This means there can be a countable infinity of
terms with distinct interpretations, leading to an uncountable
infinity of interpretations for predicates over those terms. We
can prevent this kind of nesting by restricting the types of
predicates in the following way.

We insist that among the arguments to a predicate from Σfg,
at most one is of type W , and every argument that occurs to
the left of the W -typed argument (if there is one) must be of a
smaller order than this function of W . For example, we would
admit predicates of type S →W → o and (W → o)→W →
S → (W → o)→ o, but not those of type W →W → o nor
(W → o)→W → o.

Definition IV.1. (i) An initial type is a relational type
σ1 → · · · → σn → o where n ≥ 0 satisfying
(O1) at most one of σ1, · · · , σn is W , and
(O2) if σj = W then for all i < j, order(σi) <

order(σj → σj+1 → · · · → σn → o), and
(O3) each σj is S, or W , or initial.

(ii) Let ρ = σ → o be an initial type. We say that ρ is an
active type (typically ξ) if some σi is W ; otherwise it is
an inactive type (typically ν).

(iii) An initial limit Datalog problem is a limit Datalog
problem where for each X : ρ ∈ Σfg, ρ is initial.

Example IV.2. All the types in Examples I.3 to I.6 are initial;
but neither Add1 nor Add2 in Ex. III.6 have an initial type.

Theorem IV.3 (Decidability). Given Assumptions 1 and 2,
there is an algorithm that decides whether a given initial limit
Datalog problem is A-satisfiable.

The initial type restriction does not prevent nested terms,
but it does prevent problematic ones by making the subterm
relationship compatible with the type-theoretic order of the
terms involved. If an order-n term N of an active type contains
an order-m subterm M where m > n, then M is a subterm of
some L (another subterm of N) of type σ (say) whose order
is less than n. (This is because N must have the form X L
where X ∈ Σfg is an active type, and each Li has order less
than n.) We will see later that we can take the interpretation
of this type σ to be a finite set, and hence we don’t need to
know all possible values of M to know all possible ways in
which we can interpret N .

This ensures that we can enumerate candidate models up
to their behaviour on constructible elements. It allows (a) for
interpretations to be defined inductively: the interpretation of
all order-n predicates is given before any of order-(n + 1)
and (b) the behaviour of a predicate on a non-W argument
need only be specified on finitely many definable elements

(Lem. IV.8).
Consider a predicate symbol X : (W → o) → o ∈ Σfg.

Without restriction, there may be an infinity of definable
elements of type W → o and hence uncountably many choices
of interpretation of X . However, a Σfg-term of type W → o
can only be constructed by applying a predicate symbol Y
to some arguments N1, · · · , Nk. It follows that Y has a type
of shape σ1 → · · · → σk → W → o. By the initial type
restriction, each σi is necessarily S and hence finite. If we
have already fixed the interpretation of each such Y (each
being of lower order than X), then there are only finitely
many definable elements at type W → o. Hence, there are
only finitely many definable relations at type (W → o)→ o.

Of course, when first fixing the interpretation of Y there
can be infinitely many choices; but thanks to the limit Datalog
restriction, only countably many can satisfy the limit clause
which requires that any such interpretation is upward-closed
in its W argument. It is straightforward to see that the choices
are, moreover, r.e. (Lem. IV.10).

This leads to the notion of an interpretation that is built up
inductively by order, in which the domains of the higher-order
predicates (i.e. interpretation of types) are not determined until
the interpretations of lower-order predicates have been fixed.
The process of choosing interpretations for the types (i.e. the
frame) and the process of choosing interpretations for the
predicate symbols are entwined.

Assumptions: Recall disjoint signatures Σbg and Σfg and
1st-order structure A from Assumptions 1 and 2. Henceforth
fix an initial limit Datalog problem Γ and take

l := max{order(ρ) | X : ρ ∈ Σfg}.

Definition IV.4. Let Ξ1 and Ξ2 be (possibly higher-order)
signatures such that Ξ1 ⊆ Ξ2; and F1 and F2 be frames.

Suppose B1 is a (Ξ1,F1)-structure. We say that a (Ξ2,F2)-
structure B2 is a (Ξ2,F2)-expansion of B1 just if cB2 = cB1

for all c ∈ Ξ1.

We first define, given sets U1, · · · , Un, a relation on rela-
tional functions, ≤o,n ⊆ [Un → · · · → U1 → B]2, by

f ≤o,0 g := (f = 0 or g = 1)

f ≤o,n+1 g := ∀x ∈ Un+1 . f(x) ≤o,n g(x)

Define >n ∈ [Un → · · · → U1 → B] as ∀x .>n x = 1.
Henceforth we elide the subscript n from ≤o,n and >n.

Definition IV.5. Let n ≥ 1 and Ξ ⊆ Σfg. Given a (Ξ, F)-
structure B, define the entwined order-n frame derived from
B, written 〈B〉n, by case analysis of σ as follows.

(i) σ is initial and order(σ) ≤ n−2, or σ is (inactive, or S,
or W , or o) and order(σ) ≤ n− 1:

〈B〉nJσK := FJσK

9

(ii) σ active and order(σ) = n− 1:

〈B〉nJW → νK :=
{
> ∈ [W → 〈B〉nJνK]

}
∪{

XB s | X : τ →W → ν ∈ Ξ, si ∈ FJτiK
}

〈B〉nJσ1 → ξK := [〈B〉nJσ1K→ 〈B〉nJξK]

(iii) σ is initial and order(σ) = n:

〈B〉nJW → νK :={
f ∈ [W → 〈B〉nJνK] | ∀z ≤A z′.f(z) ≤o f(z′)

}
〈B〉nJσ1 → σ2K := [〈B〉nJσ1K→ 〈B〉nJσ2K] (σ1 6= W)

(iv) σ is not initial, or order(σ) > n:

〈B〉nJσ1 → σ2K := [〈B〉nJσ1K→ 〈B〉nJσ2K]

The preceding definition is used in the context of entwined
structures (Def. IV.6).

In that context, we explain the cases: By Lem. IV.8, sorts
covered by case (i) can be treated as finite, so are easy to deal
with. Case (ii) is the most interesting - it is where we make use
of the structure B. Here we set the interpretation of order-(n−
1) active types W → ν to be the minimum ensuring that B is
still a 〈B〉n-structure. Top (>) is needed for technical reasons.
Case (iii) keeps things countable by discarding interpretations
that don’t satisfy the limit clauses. This is exactly like the
proof of Thm. III.4. This defines the space from which we
will pick interpretations for order-n predicate symbols (say
B′), and 〈B′〉n+1 will fix the space to become finite. Case (iv)
of Def. IV.5 is only there to ensure that 〈B〉n is technically a
frame. Such types are not used anywhere.

For i ≥ 1, let Σi ⊆ Σfg consist of the predicate symbols of
Σfg with types of order at most i.

Definition IV.6. (i) A family of structures {Bn}n∈ω , in-
dexed by (order) n, is said to be entwined just if
B0 is the unique (∅,S)-structure, and each Bn+1 is a
(Σn+1, 〈Bn〉n+1)-expansion of Bn.

(ii) An entwined structure is a member of some entwined
family. An entwined model of Γ is an entwined structure
Bl+1 such that Bl+1 |= Γ.

Example IV.7. Using the background theory LIA (so W = Z),
take, for example, the term X a (Y b) (Z 5X) for some a, b
such that ∆(a),∆(b) = S and

Y : S → S → o

X : ρ = S → (S → o)→ o→W → (W → o)→ o

Z : W → ρ→ o

Now Z has a complicated type, but Z 5X must be either true
or false, so we can select behaviours for X ignorant of Z (and
the choices for Z can depend on this without introducing a
problematic cycle). This example is elaborated in [?].

In the following lemmas (full proofs for which are available
in [?]), let {Bn}n∈ω be an entwined family, and set Fn :=
〈Bn−1〉n. Note that Σl+1 = Σfg.

Lemma IV.8. Let σ be an initial type. If n > order(σ), or
n = order(σ) and σ is an inactive type, then FnJσK is finite.

Lemma IV.9. Let σ be an initial active type. If n = order(σ)
then FnJσK is r.e.

Lemma IV.10. The set of entwined families of structures is
r.e.

For each resolution proof rule, if Bl+1 entails the premises
of the rule, then it entails the conclusion. Since Bl+1J⊥K = 0,
there is no resolution proof of ⊥.

Lemma IV.11. If there is an entwined family such that Bl+1

models Γ, then there is no resolution proof of ⊥ from Γ.

On the other hand, the inductive construction gives enough
freedom to choose appropriate interpretations for the predicate
symbols whenever the clauses are satisfiable. Any model can
be reconstructed as an entwined structure that also satisfies the
clauses, with the relationship between the two mediated by a
logical relation.

Lemma IV.12. If Γ is satisfiable then there is an entwined
structure that models Γ.

Observe that, for any entwined family, Fl+1JρK is finite
whenever X : ρ ∈ Σfg. We can ask whether a particular
Bl+1 |= Γ and this is decidable because it is equivalent to
a formula in the first-order theory of ΣW .

Lemma IV.13. Given an entwined structure Bl+1, determining
if it satisfies a goal or definite clause G is decidable.

Proof of Thm. IV.3: If there is a refutation of Γ by
resolution, then we know Γ is A-unsatisfiable. By Lem. IV.11,
there is no entwined structure Bl+1 such that Bl+1 |= Γ.

If there is no resolution proof of ⊥, then there is some model
for Γ in standard semantics. This model can be converted into
an entwined model by Lem. IV.12. Hence enumerating en-
twined structures—possible because they are r.e. (Lem. IV.10)
and determining if Bl+1 |= Γ is decidable (Lem. IV.13)—will
find a model.

Therefore, we may interleave a search for resolution proofs
of ⊥ with a search for entwined models resulting in a decision
procedure for the initial limit Datalog decision problem.

Example IV.14. For a concrete example of an entwined
structure, see [?].

Remark IV.15 (Higher-order initial limit DatalogZ). It can
be shown that higher-order initial limit DatalogZ is strictly
more expressive than first-order limit DatalogZ. By this, we
mean that there are queries about databases (aka structures
on finite sets) that can be expressed with higher-order initial
limit DatalogZ but not first-order limit DatalogZ. This follows
from a result in [17] which shows that the data complexity
of k-order Datalog lies in (k− 1)-EXPTIME. Since this only
uses finite sets, the programs involved are valid higher-order

10

initial limit DatalogZ programs. [6] shows that first-order limit
DatalogZ has more reasonable time bounds (coNP-complete in
database size) hence it must be less expressive.

V. EXAMPLES

In this section, we give examples of how first-order limit
Datalog problems can be used with the background theory
of tuples of naturals (we use currying to avoid explicitly
specifying projection functions), and other WQOs.

A. Theory of tuples of naturals

In the context of limit Datalog, the theory of tuples of
naturals with componentwise ordering is much more powerful
than that of integers as demonstrated by the examples below,
the latter of which could not be accomplished using limit
DatalogZ.

The following set of clauses over F : S → N → N → o
and G : N → o express multiplication of pairs of data items
in a database:

F sx y ← x ≥ 0 ∧ y ≥ a ∧D(s, a, b)

F sx y ← y + 1 ≥ n ∧ F r n ∧ x ≥ r + b ∧D(s, a, b)

Gx← F sx 0

Here D is a database predicate and we assume that for each
s ∈ S there is a unique pair of natural numbers a, b such that
(s, a, b) ∈ D. In the canonical model of this set of clauses,
the interpretation of G is the set {x ∈ N : ∃a, b, s.(s, a, b) ∈
D ∧ x ≥ ab}.

This may be extended to express exponentiation αβ (demon-
strated below) and further to other hyperoperations.

F : N→ N→ N→ o

F x y z ← x ≥ 0 ∧ y ≥ α ∧ z ≥ 0

F x y z ← x ≥ 1 ∧ y ≥ 0 ∧ z ≥ β
F x y z ← z + 1 ≥ n ∧ F d 0n ∧ y + 1 ≥ m ∧

F rmz ∧ x ≥ r + d

Gx← F x 0 0

B. Lossy counter machines

A (classic) lossy n-counter machine (n-LCM), due to [18],
consists of: a finite set of states Q, an initial state q0 ∈ Q, a
final state qf ∈ Q, n counters c1, . . . , cn, and a finite set of
instructions, each of one of the two shapes A or B:

A. (q : ci := ci + 1; goto q′)
B. (q : if ci = 0 then goto q′ else ci := ci − 1; goto q′′)

A configuration s of such a machine is an (n+ 1)-tuple of
shape (q,m1, . . . ,mn) where q ∈ Q and each mi ∈ N being
the current value of counter ci.

A transition of such a machine consists of spontaneous
loss, followed by the execution of an instruction, followed
by spontaneous loss:

s1 ⇒ s2 iff ∃s′1, s′2. s1
l−→ s′1 → s′2

l−→ s2

The execution of an instruction (p,m1, . . . ,mi, . . . ,mn) →
(p′,m1, . . . ,m

′
i, . . . ,mn) is defined iff:

• there is an instruction of shape A and p = q, m′i = mi+1
and p′ = q′

• or, there is an instruction of shape B and p = q, mi = 0,
m′i = 0 and p′ = q′

• or, there is an instruction of shape B and p = q, mi > 0,
m′i = mi − 1 and p′ = q′′.

The spontaneous (classic) loss (q,m1, . . . ,mn)
l−→

(q,m′1, . . . ,m
′
n) is defined iff ∀i ∈ [1, n]. m′i ≤ mi.

Let us write ⇒∗ for the reflexive, transitive closure of the
transition relation.

The reachability problem for n-LCM is to decide the
following: given a configuration s, does (q0, 0, . . . , 0) ⇒∗ s?
It is known that the reachability problem is decidable as a
special case of [19]. Here we give an alternative approach
using initial limit Datalog over tuples of natural numbers.

To decide the problem, it suffices to construct a set of
definite clauses C over the foreground signature

{Rq : N→ · · · → N→ o | q ∈ Q}

(each Rq is of arity n) with canonical model B, in such a
way that, for each state q, we have B |= Rq m1 · · ·mn iff
(q0, 0, . . . , 0) ⇒∗ (q,m1, . . . ,mn). We define C as follows,
abbreviating x1 · · ·xn and y1 · · · yn by ~x and ~y respectively.
• The clause Rq0 ~x←

∧
i∈[1,n] xi = 0 is in C.

• For each state q ∈ Q, the following limit clause is in C:

Rq ~x← Rq ~y ∧
∧

i∈[1,n]

xi ≤ yi

• For each instruction of shape A, the following clause:

Rq′ ~x← Rq ~y ∧ xi = yi + 1 ∧
∧

j∈[1,n]\{i}

xj = yj

• For each instruction of shape B, the two clauses:

Rq′ ~x← Rq ~y ∧ yi = 0 ∧
∧

j∈[1,n]

xj = yj

Rq′′ ~x← Rq ~y ∧ yi > 0 ∧ xi = yi − 1
∧

j∈[1,n]\{i}

xj = yj

Lossy channel systems and other WSTSs: Lossy counter
machines are an example of a well structured transition system
(WSTS) [9]. Other examples of these, such as lossy channel
systems (LCSs), also have decidable reachability problems, but
these do not immediately fall under our theorem because the
relevant first-order theories are not decidable (in the case of
LCSs the relevant theory is that of strings with concatenation
with constants and the subword ordering). In some cases these
results can be proved by inspecting details of exactly where
in our proof the decidability property is required.

Part of our result is subsumed by the decidability of the
coverability problem for WSTSs - specifically the first-order
fragment where clauses only have a single foreground atom
in the body and the background theory is a WQO.

11

C. Languages ordered by the subword order

The subword relation is a simple and important example
of a WQO. [8] study the decidability of first-order theories
(and fragments thereof) of languages with the subword order.
Recall that a language L ⊆ ∆∗ is bounded if L ⊆ w∗1 · · · w∗n
for some n ≥ 0, and w1, · · · , wn ∈ ∆∗. Consider structures
of the form (L,v, (w)w∈L) for some L ⊆ Σ∗ where v is
the subword relation, and we can use every word from L as
a constant.

Theorem V.1 (Kuske and Zetzsche [8]). Let L ⊆ ∆∗ be
bounded and context free. Then the first-order theory of
(L,v, (w)w∈L) is decidable.

The theorem in fact holds for (a larger signature, and) a
more expressive logic, first-order logic extended by a modulo
counting quantifier [8]. The proof is by interpreting the struc-
ture in Presburger arithmetic, (N,+), which is known to be
decidable in this logic.

Since (L,v) is a countable WQO, it follows from Thm. V.1
and Thm. IV.3 that the associated initial limit Datalog problem
is decidable.

D. Basic process algebras and pushdown systems

An important class of countable WQO are context-free
processes (or basic process algebra) and the more general
collection of pushdown systems, with respect to the subword
ordering [9]; moreover they are automatic structures (folklore
but see e.g. [20, 21]) and so have decidable first-order theories
([22, 23] and various others). It follows that they satisfy
Assumption 2.

VI. RELATED WORK AND FURTHER DIRECTIONS

a) Decidable classes of constrained Horn clauses: Cox,
McAloon and Tretkoff [4] have shown a catalogue of sub-
recursive complexity results for various fragments of CHC
obtained by restricting the syntax (in particular, the placement
of variables) and the mechanism by which parameters are
passed. Our work, however, takes Kaminski, Cuenca Grau,
Kostylev and Motik’s limit restriction [6] as the starting point.

The limit restriction was introduced as a way of taming
the undecidability of DatalogZ [24] that was compatible with
the desire to express problems in declarative data analysis.
Moreover, it is shown in [6] that, under reasonable assump-
tions, the data complexity of the entailment in the logic is
PTIME. Our work extends limit DatalogZ to higher-orders.
Higher-order extensions of Datalog are interesting in their own
right: [17] have shown that, on ordered databases, order-k
Datalog captures (k − 1)-EXPTIME.

b) Decidability beyond first order: There is a lot of
interest in the decidability of theories that go beyond first-order
logic. A very well studied case is that of monadic second-order
theories (see e.g. [25]). Of these, perhaps the best known is
Rabin’s celebrated result on the decidability of the theory of

two successor functions [26], from which the decidability of
several other monadic second-order theories can be deduced.

For applications in e.g. higher-order program verification,
however, it is important to retain higher-type relations of
all arities and to admit background theories. A recent work
with similar requirements is that of [27] who, motivated by
applications in program synthesis, have introduced the logic
EQSMT. Formulas of this logic have a ∃∗∀∗ prefix supporting
second-order quantification at certain types. They show that
satisfiability of EQSMT formulas is decidable whenever sat-
isfiability for the relevant fragments of the background theories
is decidable.

c) Higher-order constrained Horn clauses: Our work
takes place in the setting of HoCHC [3]. Even when the
background theory is decidable, satisfiability of HoCHC is
typically undecidable (already, first-order constrained Horn is
typically undecidable [24]). However [7, § VIII] identified the
so-called Bernays-Schönfinkel-Ramsey fragment of HoCHC,
modulo a restricted form of linear integer arithmetic, has a
decidable satisfiability problem by showing equi-satisfiability
to clauses w.r.t. a finite number of background theories with
finite domains. (HoCHC satisfiability is decidable for trivial
background theories (e.g. those of finite domains).)

An alternative higher-order logic supporting integer arith-
metic is HoFLZ of [28]. Whilst we do not know of any work
on decidable fragments of HoFLZ , we expect that a version of
our results on initial limit DatalogZ could be transposed into
that setting.

Future directions: One question that remains open is: for
which sets of types is the higher-order limit DatalogZ problem
decidable when predicates are restricted to those types? There
are alternatives, broadly similar to Def. IV.1, which are neither
a superset nor a subset of the set of initial types, for which
the same proof strategy works (and we conjecture that such
results can be proved as corollaries to Thm. IV.3, by inserting
dummy variables).

Except for the lower bounds due to being a superset of
higher-order Datalog, we have not considered runtime com-
plexity of this problem. If the algorithm derived from the
decidability proof were used, calculating its runtime would be
an exercise in the construction of large numbers. Since many
practical uses would have shapes that could be converted to
1st-order programs, there is some hope for tractable perform-
ance on useful subsets of initial limit DatalogZ.

Conclusion: We have presented initial limit Datalog, the
first higher-order extension of constrained Horn clauses (over
a non-trivial background theory) for which the satisfiability
problem is decidable. Moreover the decision procedure ex-
tends to a variety of background theories, including linear
integer arithmetic, and any countable well-quasi-order with
a decidable first-order theory. Our decidability proof uses a
new kind of term model, called entwined structures, which
are recursively enumerable, and model checking is decidable.

12

REFERENCES

[1] J. Jaffar and M. J. Maher, “Constraint logic programming: a survey,”
The Journal of Logic Programming, vol. 19-20, pp. 503 – 581, 1994,
special Issue: Ten Years of Logic Programming.

[2] N. Bjørner, A. Gurfinkel, K. L. McMillan, and A. Rybalchenko, “Horn
clause solvers for program verification,” in Fields of Logic and Compu-
tation II - Essays Dedicated to Yuri Gurevich on the Occasion of His
75th Birthday, 2015, pp. 24–51.

[3] T. Cathcart Burn, C.-H. L. Ong, and S. J. Ramsay, “Higher-order
constrained horn clauses for verification,” Proc. ACM Program. Lang.,
vol. 2, no. POPL, pp. 11:1–11:28, Dec. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3158099

[4] J. Cox, K. McAloon, and C. Tretkoff, “Computational complexity
and constraint logic programming languages,” Ann. Math. Artif.
Intell., vol. 5, no. 2-4, pp. 163–189, 1992. [Online]. Available:
https://doi.org/10.1007/BF01543475

[5] P. J. Downey, “Undecidability of presburger arithmetic with a single
monadic predicate letter,” Center for Research in Computer Technology,
Harvard University, Technical Report TR-18-72, 1972.

[6] M. Kaminski, B. Cuenca Grau, E. V. Kostylev, B. Motik, and
I. Horrocks, “Foundations of declarative data analysis using limit
datalog programs,” in Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne,
Australia, August 19-25, 2017, 2017, pp. 1123–1130. [Online].
Available: https://doi.org/10.24963/ijcai.2017/156

[7] C.-H. L. Ong and D. Wagner, “HoCHC: A refutationally complete and
semantically invariant system of higher-order logic modulo theories,”
in 34th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2019, Vancouver, BC, Canada, June 24-27, 2019, 2019, pp. 1–14.
[Online]. Available: https://doi.org/10.1109/LICS.2019.8785784

[8] D. Kuske and G. Zetzsche, “Languages ordered by the subword
order,” in Foundations of Software Science and Computation Structures
- 22nd International Conference, FOSSACS 2019, Held as Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings,
ser. Lecture Notes in Computer Science, M. Bojanczyk and A. Simpson,
Eds., vol. 11425. Springer, 2019, pp. 348–364. [Online]. Available:
https://doi.org/10.1007/978-3-030-17127-8_20

[9] A. Finkel and P. Schnoebelen, “Well-structured transition systems
everywhere!” Theor. Comput. Sci., vol. 256, no. 1-2, pp. 63–92, 2001.
[Online]. Available: https://doi.org/10.1016/S0304-3975(00)00102-X

[10] A. Charalambidis, K. Handjopoulos, P. Rondogiannis, and W. W. Wadge,
“Extensional higher-order logic programming,” ACM Trans. Comput.
Log., vol. 14, no. 3, pp. 21:1–21:40, 2013.

[11] L. Henkin, “Completeness in the theory of types,” J. Symb. Log., vol. 15,
no. 2, pp. 81–91, 1950.

[12] J. A. Robinson, “A machine-oriented logic based on the resolution
principle,” J. ACM, vol. 12, no. 1, pp. 23–41, 1965.

[13] L. Bachmair, H. Ganzinger, and U. Waldmann, “Refutational theorem
proving for hierarchic first-order theories,” Appl. Algebra Eng. Commun.
Comput., vol. 5, pp. 193–212, 1994.

[14] S. Schmitz and P. Schnoebelen, “Algorithmic aspects of WQO
theories,” Tech. Rep., 2017, cMI Lecture Notes. [Online]. Available:
http://www.lsv.fr/~phs/algorithmic_aspects_of_wqos.pdf

[15] S. Halfon, P. Schnoebelen, and G. Zetzsche, “Decidability, complexity,
and expressiveness of first-order logic over the subword ordering,”
in 32nd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017. IEEE
Computer Society, 2017, pp. 1–12. [Online]. Available: https:
//doi.org/10.1109/LICS.2017.8005141

[16] P. Alvaro, T. Condie, N. Conway, K. Elmeleegy, J. M. Hellerstein,
and R. Sears, “Boom analytics: Exploring data-centric, declarative
programming for the cloud,” in Proceedings of the 5th European
Conference on Computer Systems, ser. EuroSys ’10. New York,
NY, USA: Association for Computing Machinery, 2010, p. 223–236.
[Online]. Available: https://doi.org/10.1145/1755913.1755937

[17] A. Charalambidis, C. Nomikos, and P. Rondogiannis, “The expressive
power of higher-order datalog,” TPLP, vol. 19, no. 5-6, pp. 925–940,
2019. [Online]. Available: https://doi.org/10.1017/S1471068419000279

[18] R. Mayr, “Undecidable problems in unreliable computations,” Theor-
etical Computer Science, vol. 297, no. 1, pp. 337 – 354, 2003, latin
American Theoretical Informatics.

[19] A. Bouajjani and R. Mayr, “Model checking lossy vector addition
systems,” in STACS 99, C. Meinel and S. Tison, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1999, pp. 323–333.

[20] A. W. Lin, “Model checking infinite-state systems: Generic and specific
approaches,” Ph.D. dissertation, University of Edinburgh, 2010.

[21] V. Barany, “Automatic presentations of infinite structures,” Ph.D. disser-
tation, RWTH Aachen University, 2007.

[22] B. R. Hodgson, “On direct products of automaton decidable theories,”
Theor. Comput. Sci., vol. 19, pp. 331–335, 1982. [Online]. Available:
https://doi.org/10.1016/0304-3975(82)90042-1

[23] B. Khoussainov and A. Nerode, “Automatic presentations of structures,”
in Logical and Computational Complexity. Selected Papers. Logic
and Computational Complexity, International Workshop LCC ’94,
Indianapolis, Indiana, USA, 13-16 October 1994, ser. Lecture Notes in
Computer Science, D. Leivant, Ed., vol. 960. Springer, 1994, pp. 367–
392. [Online]. Available: https://doi.org/10.1007/3-540-60178-3_93

[24] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov, “Complexity and
expressive power of logic programming,” ACM Comput. Surv., vol. 33,
no. 3, pp. 374–425, 2001.

[25] Y. Gurevich, “Monadic second-order theories,” in Model-Theoretical
Logics, J. Barwise and S. Feferman, Eds. Springer-Verlag, 1985, ch.
XIII, pp. 479–506.

[26] M. O. Rabin, “Decidability of second-order theories and automata on
infinite trees,” Transactions of the American Mathematical Society, vol.
141, pp. 1–35, 1969.

[27] P. Madhusudan, U. Mathur, S. Saha, and M. Viswanathan, “A decidable
fragment of second order logic with applications to synthesis,” in
Proceedings of CSL’18, 2018, pp. 31:1–31:19.

[28] N. Kobayashi, T. Tsukada, and K. Watanabe, “Higher-order program
verification via HFL model checking,” in Programming Languages
and Systems - 27th European Symposium on Programming, ESOP
2018, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April
14-20, 2018, Proceedings, 2018, pp. 711–738. [Online]. Available:
https://doi.org/10.1007/978-3-319-89884-1_25

13

http://doi.acm.org/10.1145/3158099
https://doi.org/10.1007/BF01543475
https://doi.org/10.24963/ijcai.2017/156
https://doi.org/10.1109/LICS.2019.8785784
https://doi.org/10.1007/978-3-030-17127-8_20
https://doi.org/10.1016/S0304-3975(00)00102-X
http://www.lsv.fr/~phs/algorithmic_aspects_of_wqos.pdf
https://doi.org/10.1109/LICS.2017.8005141
https://doi.org/10.1109/LICS.2017.8005141
https://doi.org/10.1145/1755913.1755937
https://doi.org/10.1017/S1471068419000279
https://doi.org/10.1016/0304-3975(82)90042-1
https://doi.org/10.1007/3-540-60178-3_93
https://doi.org/10.1007/978-3-319-89884-1_25

	Introduction
	Technical preliminaries
	Relational higher-order logic
	Syntax
	Semantics

	Higher-order constrained Horn clauses (HoCHC)
	Resolution proof system

	Higher-order limit Datalog
	Decidability at order 1
	Undecidability in general

	Initial limit Datalog
	Examples
	Theory of tuples of naturals
	Lossy counter machines
	Languages ordered by the subword order
	Basic process algebras and pushdown systems

	Related work and further directions
	References

