Densities of Almost Surely Terminating Probabilistic Programs are Differentiable Almost Everywhere

Carol Mak Luke Ong Hugo Paquet
Dominik Wagner

ESOP 2021

Make Bayesian Machine Learning more accessible

Make Bayesian Machine Learning more accessible*

* to domain experts with basic programming skills

Make Bayesian Machine Learning more accessible*

* to domain experts with basic programming skills

separate modelling from inference

Model

Inference

probabilistic programming language

 \rightarrow exploit gradients

 \rightarrow exploit gradients

[Yang, FSCD 2019]

"Can a probabilistic program denote a distribution with a density that is not differentiable at some non-measure-zero set?"

[Yang, FSCD 2019]

Main Result

Main Result

The value- and weight-functions are differentiable *almost everywhere*

(except for set of measure 0)

Main Result

Main Result

Main Result

special case: purely *deterministic* programs

Main Result

- special case: purely *deterministic* programs
- proof technique: symbolic execution

Main Result

- special case: purely *deterministic* programs
- proof technique: symbolic execution

This talk:

■ focus on *weight*-function

Main Result

- special case: purely *deterministic* programs
- proof technique: symbolic execution

This talk:

- focus on *weight*-function
- conditions on primitive operations
- symbolic execution and differentiability

Part I: Operational Semantics

deterministic function from random *samples* to *value* (or failure) and unnormalised *density* (or weight)

[Kozen 1979, Borgström et al. 2016, ...]

if sample $< \underline{0.5}$ then score($\underline{0}$) else score($\underline{1}$)

if sample $< \underline{0.5}$ then score($\underline{0}$) else score($\underline{1}$)

weight([0.1]) = 0

if sample $< \underline{0.5}$ then score($\underline{0}$) else score($\underline{1}$)

weight([0.1]) = 0 weight([0.7]) = 1

Configuration:

Configuration: $\langle M, w, s \rangle$

$\langle \text{if sample} < \underline{0.5} \text{ then score}(\underline{0}) \text{ else score}(\underline{1}), 1, [] \rangle$

$\langle \text{if sample} < \underline{0.5} \text{ then score}(\underline{0}) \text{ else score}(\underline{1}), 1, [] \rangle$

$\rightarrow \langle \text{if } \underline{\mathbf{0.1}} < \underline{\mathbf{0.5}} \text{ then score}(\underline{\mathbf{0}}) \text{ else score}(\underline{\mathbf{1}}), \mathbf{1}, [\mathbf{0.1}] \rangle$

$\rightarrow \langle \text{if } \underline{0.1} < \underline{0.5} \text{ then score}(\underline{0}) \text{ else score}(\underline{1}), 1, [0.1] \rangle$

$\rightarrow \langle \text{score}(\underline{0}), 1, [0.1] \rangle$

 $\rightarrow \langle \text{score}(\underline{0}), 1, [0.1] \rangle$

 $\rightarrow \langle \underline{0}, \mathbf{0}, [0.1] \rangle$

$$\rightarrow \langle \underline{0}, \mathbf{0}, [0.1] \rangle$$

weight([0.1]) = 0

 $weight(s) \coloneqq$

$$\mathsf{weight}(\mathbf{s}) \coloneqq \begin{cases} \mathbf{w} & \text{if } \langle M, 1, [] \rangle \rightarrow^* \langle V, \mathbf{w}, \mathbf{s} \rangle \end{cases}$$

weight(s) :=
$$\begin{cases} \mathbf{w} & \text{if } \langle M, 1, [] \rangle \rightarrow^* \langle V, \mathbf{w}, \mathbf{s} \rangle \\ 0 & \text{otherwise} \end{cases}$$

Part II: Failure of Differentiability

let x = samplein score(f(x))

let
$$x = sample$$

in $score(f(x))$

weight([s]) = f(s)

let
$$x = \text{sample}$$

in $\text{score}(\chi_{\mathbb{Q}}(x))$

$$ext{weight}([s]) = \chi_{\mathbb{Q}}(s) = egin{cases} 1 & ext{if } s \in \mathbb{Q} \ 0 & ext{otherwise} \end{cases}$$

let x = sample
in score
$$(\chi_{\mathbb{Q}}(x))$$

weight([s]) = $\chi_{\mathbb{Q}}(s) = \begin{cases} 1 & \text{if } s \in \mathbb{Q} \\ 0 & \text{otherwise} \end{cases}$

$$\begin{array}{ll} \mathsf{let} \ \mathsf{x} = \mathsf{sample} \\ \mathsf{in} \ \ \mathsf{score}\left(\chi_{\mathbb{Q}}(\mathsf{x})\right) \\ \\ \mathsf{weight}([s]) = \chi_{\mathbb{Q}}(s) = \begin{cases} 1 & \mathsf{if} \ s \in \mathbb{Q} \\ 0 & \mathsf{otherwise} \end{cases} \end{array}$$

Assumption 1: Primitives are differentiable.

```
let x = sample
in if x < 0 then
    score(0)
    else
    score(1)</pre>
```

```
let x = sample
in if x < 0 then
    score(0)
    else
    score(1)</pre>
```

$$ext{weight}([s]) = egin{cases} 0 & ext{if } s < 0 \ 1 & ext{otherwise} \end{cases}$$


```
let x = sample
in if f(x) < 0 then
    score(0)
    else
    score(1)</pre>
```

```
let x = sample
in if f(x) < 0 then
    score(0)
    else
    score(1)</pre>
```

weight([s]) =
$$\begin{cases} 0 & \text{if } f(s) < 0 \\ 1 & \text{otherwise} \end{cases}$$

```
let x = sample
in if f(x) < 0 then
    score(0)
else
    score(1)

weight([s]) = 
\begin{cases}
0 & \text{if } f(s) < 0 \\
1 & \text{otherwise}
\end{cases}
```

let x = sample
in if f(x) < 0 then
 score(0)
else
 score(1)

weight([s]) =
$$\begin{cases}
0 & \text{if } f(s) < 0 \\
1 & \text{otherwise}
\end{cases}$$

Assumption 2: $\partial f^{-1}(-\infty, 0)$ has measure 0 for primitives f.

```
let x = sample
in if g(f(x)) < 0 then
    score(0)
    else
    score(1)</pre>
```

Assumption 2: $\partial f^{-1}(-\infty, 0)$ has measure 0 for primitives f.

```
let x = sample
in if g(f(x)) < 0 then
    score(0)
    else
    score(1)</pre>
```

Assumption 2: $\partial f^{-1}(-\infty, 0)$ has measure 0 for primitives f.

Assumption 3: Primitives are closed under composition.

let rec enumQ $y = \ldots$

Part III: Symbolic Execution

if sample $< \underline{0.5}$ then score($\underline{0}$) else score($\underline{1}$)

if sample $< \underline{0.5}$ then score($\underline{0}$) else score($\underline{1}$)

if sample $< \underline{0.5}$ then score($\underline{0}$) else score($\underline{1}$)

weight([0.1]) = 0 weight([0.11]) = ??? Examine weight for all samples consistent with a branch at once.

$\langle \text{if sample} < \underline{0.5} \text{ then score}(\underline{0}) \text{ else score}(\underline{1}), 1, [] \rangle$

$\langle \text{if sample} < \underline{0.5} \text{ then score}(\underline{0}) \text{ else score}(\underline{1}), 1, [] \rangle$

$\rightarrow \langle \text{if } \underline{\mathbf{0.1}} < \underline{\mathbf{0.5}} \text{ then score}(\underline{\mathbf{0}}) \text{ else score}(\underline{\mathbf{1}}), \mathbf{1}, [\mathbf{0.1}] \rangle$

$\rightarrow \langle \text{if } \underline{\mathbf{0.1}} < \underline{\mathbf{0.5}} \text{ then score}(\underline{\mathbf{0}}) \text{ else score}(\underline{\mathbf{1}}), \mathbf{1}, [\mathbf{0.1}] \rangle$

 $\Rightarrow \langle\!\!\langle \text{if } \alpha < \underline{0.5} \text{ then score}(\underline{0}) \text{ else score}(\underline{1}), 1, (\mathbf{0}, \mathbf{1}) \rangle\!\!\rangle$ sampling variable

$\rightarrow \langle \text{if } \underline{0.1} < \underline{0.5} \text{ then score}(\underline{0}) \text{ else score}(\underline{1}), 1, [0.1] \rangle$

 $\Rightarrow \langle\!\!\langle \text{if } \alpha < \underline{\mathbf{0.5}} \text{ then score}(\underline{0}) \text{ else score}(\underline{1}), 1, (0, 1) \rangle\!\!\rangle$ sampling variable

$\rightarrow \langle \mathsf{score}(\underline{0}), 1, [0.1] \rangle$

 $\Rightarrow \langle\!\!\langle \mathsf{score}(\underline{0}), 1, (\mathbf{0}, \mathbf{0.5}) \rangle\!\!\rangle$

 $\rightarrow \langle \text{score}(\underline{0}), 1, [0.1] \rangle$

 $\Rightarrow \langle\!\langle \mathsf{score}(\underline{\mathbf{0}}), 1, (0, 0.5) \rangle\!\rangle$

$\rightarrow \langle \underline{0}, \mathbf{0}, [0.1] \rangle$

 $\Rightarrow \langle\!\!\langle \underline{0}, \mathbf{0}, (0, 0.5) \rangle\!\!\rangle$

 $\rightarrow \langle \underline{0}, \mathbf{0}, [0.1] \rangle$

 $\Rightarrow \langle\!\!\langle \underline{0}, \mathbf{0}, (0, 0.5) \rangle\!\!\rangle$

weight([s]) = 0 whenever s < 0.5

term accumulated weight trace of samples
Configuration:
$$\langle M, w, \mathbf{s} \rangle$$

term accumulated weight trace of samples
Configuration:
$$\langle M, w, s \rangle$$

Symbolic Configuration: $\langle \mathcal{M}, w, U \rangle$

term accumulated weight trace of samples
Configuration:
$$\langle M, \tilde{w}, \tilde{s} \rangle$$

- *M*: *symbolic* term
 - sampling variables $\alpha_1, \ldots, \alpha_n$
 - (delayed operations)

term
 accumulated weight
 trace of samples

 Configuration:

$$M$$
, w , s
 \checkmark

 Symbolic Configuration:
 $\langle H \rangle$, w , $U \rangle$

 symbolic term
 set of traces in branch

- *M*: *symbolic* term
 - sampling variables $\alpha_1, \ldots, \alpha_n$
 - (delayed operations)
- $U \subseteq (0,1)^n$

$$\begin{array}{c} \text{term} & \text{accumulated weight} & \text{trace of samples} \\ \hline \\ \text{Configuration:} & & M, w, s \end{array}$$

$$\begin{array}{c} \text{Symbolic Configuration:} & & \mathcal{M}, w, s \end{array}$$

$$\begin{array}{c} \text{Symbolic Configuration:} & & \mathcal{M}, w, s \end{array}$$

$$\begin{array}{c} \text{Symbolic Configuration:} & & \mathcal{M}, w, s \end{array}$$

■ *M*: *symbolic* term

- sampling variables $\alpha_1, \ldots, \alpha_n$
- (delayed operations)
- $U \subseteq (0,1)^n$
- $w: U \to \mathbb{R}_{\geq 0}$

Define Symbolic Execution to Closely Mirror Operational Semantics

Define \$ Operati

Densities of A.S. Terminating Programs are Differentiable A.E. Now, we introduce the following rules for symbolic redex contractions: 21 $\langle\!\!\langle \underline{f}(\nu_1,\ldots,\nu_\ell),w,U\rangle\!\!\rangle \Rightarrow \langle\!\!\langle \underline{f}(\nu_1,\ldots,\nu_\ell),w,\operatorname{\mathsf{dom}} \|\!\!|\underline{f}(\nu_1,\ldots,\nu_\ell)\| \cap U\rangle\!\!\rangle$ $\langle\!\langle \mathsf{Y}(\lambda y, \mathcal{M}), w, U \rangle\!\rangle \Rightarrow \langle\!\langle \lambda z, \mathcal{M} [\mathsf{Y}(\lambda y, \mathcal{M})/y] z, w, U \rangle\!\rangle$ r $\langle\!\!\langle if(\mathcal{V} \leq 0, \mathcal{M}, \mathcal{K}), w, U
angle \Rightarrow \langle\!\!\langle \mathcal{M}, w, ||\mathcal{V}||^{-1}(-\infty, 0] \cap U
angle$ $\langle\!\!\langle \mathsf{if}(\mathcal{V}\leq 0,\mathcal{M},\mathcal{N}), w, U
angle\!\!\rangle \Rightarrow \langle\!\!\langle \mathcal{N}, w, || \mathcal{V} ||^{-1}(0,\infty) \cap U
angle\!\!\rangle$ $\langle\!\!\!\langle \mathsf{sample}, w, U \rangle\!\!\!\rangle \Rightarrow \langle\!\!\!\langle \alpha_{n+1}, w', U' \rangle\!\!\!\rangle$ $\langle\!\!\!\langle \mathsf{score}(\mathcal{V}), w, U \rangle\!\!\!\rangle \Rightarrow \langle\!\!\langle \mathcal{V}, \ \|\mathcal{V}\| \cdot w \ , \ \|\mathcal{V}\|^{-1}[0, \infty) \cap U \ \!\!\rangle$ In the rule for sample, $U' \coloneqq \{(r, s \# [s']) \mid (r, s) \in U \land s' \in (0, 1)\}$ and $w'(r, s \# (r, s) \oplus U \land s' \in (0, 1)\}$ $(U\subseteq \mathbb{R}^m\times\mathbb{S}_n)$ $[s']) \coloneqq w(r,s); \text{ in the rule for Score}(\mathcal{V}), (\|\mathcal{V}\| \cdot w)(r,s) \coloneqq \|\mathcal{V}\|(r,s) \cdot w(r,s) + \|\mathcal{V}\|(r,s) + \|\mathcal{V}\|(r,$ The rules are designed to closely mirror their concrete counterparts. Crucially, the rule for sample introduces a "fresh" sampling variable, and the two Clauy, the rule to sample introduces a firsh sampling variable, and the two rules for conditionals split the last component $U \subseteq \mathbb{R}^m \times S_n$ according to whether $\| \mathcal{V} \| (\mathbf{r}, \mathbf{s}) \leq 0 \text{ or } \| \mathcal{V} \| (\mathbf{r}, \mathbf{s}) > 0.$ The "delay" contraction (second rule) is introduced for a technical reason: ultimately, to enable item 1 (Soundness). Otherwise it is, for example, unclear whether $\lambda y. \alpha_1 + 1$ should correspond to $\lambda y. 0.5 + 1$ or Finally we lift this to arbitrary symbolic terms with the symbolic evaluation contexts:

19/22

(Soundness) If $\langle\!\langle M, 1, [] \rangle\!\rangle \Rightarrow^* \langle\!\langle \mathcal{V}, w, U \rangle\!\rangle$

(Soundness) If
$$\langle\!\langle M, 1, [] \rangle\!\rangle \Rightarrow^* \langle\!\langle \mathcal{V}, w, U \rangle\!\rangle$$
 symbolic value

(Soundness) If
$$\langle\!\langle M, 1, [] \rangle\!\rangle \Rightarrow^* \langle\!\langle \psi, w, U \rangle\!\rangle$$
 then
 $w_{|U} = weight_{|U}$ symbolic value

(Soundness) If
$$\langle\!\langle M, 1, [] \rangle\!\rangle \Rightarrow^* \langle\!\langle \mathcal{V}, w, U \rangle\!\rangle$$
 then
• $w_{|\mathbf{U}} = \text{weight}_{|\mathbf{U}}$ symbolic value

(Completeness) If M terminates on s

(Soundness) If
$$\langle\!\langle M, 1, [] \rangle\!\rangle \Rightarrow^* \langle\!\langle \mathcal{V}, w, U \rangle\!\rangle$$
 then
 $w_{|U} = weight_{|U}$ symbolic value

(Completeness) If *M* terminates on s then $\langle\!\langle M, 1, [] \rangle\!\rangle \Rightarrow^* \langle\!\langle \mathcal{V}, w, U \rangle\!\rangle$ s.t. $s \in U$.

(Soundness) If
$$\langle\!\langle M, 1, [] \rangle\!\rangle \Rightarrow^* \langle\!\langle \mathcal{V}, w, U \rangle\!\rangle$$
 then
 $w_{|U} = weight_{|U}$ symbolic value

(Completeness) If *M* terminates on s then $\langle\!\langle M, 1, [] \rangle\!\rangle \Rightarrow^* \langle\!\langle \mathcal{V}, w, U \rangle\!\rangle$ s.t. $s \in U$.

(Invariance) If $\langle\!\langle M, 1, [] \rangle\!\rangle \Rightarrow^* \langle\!\langle \mathcal{N}, w, U \rangle\!\rangle$

(Soundness) If
$$\langle\!\langle M, 1, [] \rangle\!\rangle \Rightarrow^* \langle\!\langle \mathcal{V}, w, U \rangle\!\rangle$$
 then
 $w_{|U} = weight_{|U}$ symbolic value

(Completeness) If *M* terminates on s then $\langle\!\langle M, 1, []\rangle\!\rangle \Rightarrow^* \langle\!\langle \mathcal{V}, w, U\rangle\!\rangle$ s.t. $\mathbf{s} \in \mathbf{U}$.

(Invariance) If $\langle\!\langle M, 1, []\rangle\!\rangle \Rightarrow^* \langle\!\langle \mathcal{N}, w, U\rangle\!\rangle$ then

• w is *differentiable* • boundary of U has measure 0 \Rightarrow assumptions on primitives

(Soundness) If
$$\langle\!\langle M, 1, [] \rangle\!\rangle \Rightarrow^* \langle\!\langle \mathcal{V}, w, U \rangle\!\rangle$$
 then
 $w_{|U} = weight_{|U}$ symbolic value

(Completeness) If *M* terminates on s then $\langle\!\langle M, 1, []\rangle\!\rangle \Rightarrow^* \langle\!\langle \mathcal{V}, w, U\rangle\!\rangle$ s.t. $\mathbf{s} \in \mathbf{U}$.

(Invariance) If $\langle\!\langle M, 1, []\rangle\!\rangle \Rightarrow^* \langle\!\langle \mathcal{N}, w, U\rangle\!\rangle$ then

• w is *differentiable* • boundary of U has measure 0 \rangle assumptions on primitives

Theorem

The weight-function is differentiable for almost all terminating traces.

This talk:

- conditions on primitive operations
- *symbolic* execution as a proof technique

This talk:

- conditions on primitive operations
- symbolic execution as a proof technique
- differentiability of weight-function on almost all terminating traces

This talk:

- conditions on primitive operations
- symbolic execution as a proof technique
- differentiability of weight-function on almost all terminating traces

Also in the paper:

- extension to almost all traces assuming almost-sure termination
- value-function

This talk:

- conditions on primitive operations
- symbolic execution as a proof technique
- differentiability of weight-function on almost all terminating traces

Also in the paper:

- extension to almost all traces assuming almost-sure termination
- value-function

Future directions:

applications in *inference* algorithms

Densities of almost surely terminating probabilistic programs are differentiable almost everywhere

Carol Mak Luke Ong Hugo Paquet
Dominik Wagner

dominik.wagner@cs.ox.ac.uk

backup slides

