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Part I:
Operational Semantics

Recap



Probabilistic Program:

deterministic function from random samples to
value (or failure) and unnormalised density (or weight)

[Kozen 1979, Borgström et al. 2016, ...]
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if sample < 0.5 then score(0) else score(1)

weight([0.1]) = 0

weight([0.7]) = 1
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Operational Semantics
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〈 M , w , s 〉

term accumulated weight trace of samples
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Part II:
Failure of Differentiability



1. Primitive Operations

l e t x = sample
in s c o r e ( ( x ) )

weight([s]) =

=

{
1 if s ∈ Q
0 otherwise

Assumption 1: Primitives are differentiable.
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2. Conditionals

l e t x = sample
in i f x < 0 then

s c o r e (0 )
e l se

s c o r e (1 )

weight([s]) =

{
0 if s < 0
1 otherwise

3

Assumption 2: ∂f −1(−∞, 0) has measure 0 for primitives f .

Assumption 3: Primitives are closed under composition.
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3. Recursion

return 1 if y is rational,
diverge otherwise

l e t rec enumQ y = . . .

l e t x = sample
in s c o r e (enumQ( x ) )

weight([s]) =

{
1 if s ∈ Q
0 otherwise
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Part III:
Symbolic Execution
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Examine weight for all samples
consistent with a branch at once.
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Symbolic Execution

sampling variable

weight([s]) = 0 whenever s < 0.5
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term accumulated weight trace of samples

Configuration: 〈 M , w , s 〉

Symbolic Configuration: ⟪ M , w , U ⟫

symbolic term weight function set of traces in branch

M : symbolic term
− sampling variables α1, . . . , αn

− (delayed operations)
U ⊆ (0, 1)n

w : U → R≥0
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Define Symbolic Execution to Closely Mirror
Operational Semantics

Densities of A.S. Terminating Programs are Di↵erentiable A.E.
21

Now, we introduce the following rules for symbolic redex contractions:

�(�y. M ) V , w , U�) �M [V /y], w , U��f(V1, . . . , V`), w , U�) � f (V1, . . . , V`), w , dom
��f (V1, . . . , V`)

��\ U �
�Y(�y. M ), w , U�) ��z. M [Y(�y. M )/y] z, w , U�

�if �V  0, M , N
�
, w , U�) �M , w , kV k�1

(�1, 0] \ U �
�if �V  0, M , N

�
, w , U�) �N , w , kV k�1

(0,1) \ U �
�sample, w , U�) � ↵n+1 , w 0, U 0�

(U ✓ Rm ⇥ Sn)

�score(V ), w , U�) �V , kV k · w , kV k�1
[0,1) \ U �

In the rule for sample, U 0 := {(r, s++[s0]) | (r, s) 2 U ^s0 2 (0, 1)} and w 0(r, s++

[s0]) := w(r, s); in the rule for score(V ), (kV k · w)(r, s) := kV k (r, s) · w(r, s).

The rules are designed to closely mirror their concrete counterparts. Cru-

cially, the rule for sample introduces a “fresh” sampling variable, and the two

rules for conditionals split the last component U ✓ Rm⇥Sn according to whether

kV k (r, s)  0 or kV k (r, s) > 0. The “delay” contraction (second rule) is intro-

duced for a technical reason: ultimately, to enable item 1 (Soundness). Otherwise

it is, for example, unclear whether �y.↵1 +1 should correspond to �y. 0.5+1 or

�y. 1.5 for s1 = 0.5.Finally we lift this to arbitrary symbolic terms using the obvious rule for

symbolic evaluation contexts:

�R , w , U�) �R 0, w 0, U 0��E [R ], w , U�) �E [R 0], w 0, U 0�
Note that we do not need rules corresponding to reductions to fail because

the third component of the symbolic configurations “filters out” the pairs (r, s)

corresponding to undefined behaviour. In particular, the following holds:

Lemma 6. Suppose �M , w , U� is a symbolic configuration and �M , w , U� )

�N , w 0, U 0�. Then �N , w 0, U 0� is a symbolic configuration.

A key advantage of the symbolic execution is that the induced computation

tree is finitely branching, since branching only arises from conditionals, splitting

the trace space into disjoint subsets. This contrasts with the concrete situation

(from Sec. 3), in which sampling creates uncountably many branches.

Lemma 7 (Basic Properties). Let �M , w , U� be a symbolic configuration.

Then

1. There are at most countably distinct such U 0 that �M , w , U�)⇤ �N , w 0, U 0�.

2. If �M , w , U�)⇤ �Vi, wi, Ui� for i 2 {1, 2} then U1 = U2 or U1 \ U2 = ;.

3. If �M , w , U� )⇤ �Ei[sample], wi, Ui� for i 2 {1, 2} then U1 = U2 or U1 \

U2 = ;.
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kV k (r, s)  0 or kV k (r, s) > 0. The “delay” contraction (second rule) is intro-

duced for a technical reason: ultimately, to enable item 1 (Soundness). Otherwise

it is, for example, unclear whether �y.↵1 +1 should correspond to �y. 0.5+1 or

�y. 1.5 for s1 = 0.5.Finally we lift this to arbitrary symbolic terms using the obvious rule for

symbolic evaluation contexts:

�R , w , U�) �R 0, w 0, U 0��E [R ], w , U�) �E [R 0], w 0, U 0�
Note that we do not need rules corresponding to reductions to fail because

the third component of the symbolic configurations “filters out” the pairs (r, s)

corresponding to undefined behaviour. In particular, the following holds:

Lemma 6. Suppose �M , w , U� is a symbolic configuration and �M , w , U� )

�N , w 0, U 0�. Then �N , w 0, U 0� is a symbolic configuration.

A key advantage of the symbolic execution is that the induced computation

tree is finitely branching, since branching only arises from conditionals, splitting

the trace space into disjoint subsets. This contrasts with the concrete situation

(from Sec. 3), in which sampling creates uncountably many branches.

Lemma 7 (Basic Properties). Let �M , w , U� be a symbolic configuration.

Then

1. There are at most countably distinct such U 0 that �M , w , U�)⇤ �N , w 0, U 0�.

2. If �M , w , U�)⇤ �Vi, wi, Ui� for i 2 {1, 2} then U1 = U2 or U1 \ U2 = ;.

3. If �M , w , U� )⇤ �Ei[sample], wi, Ui� for i 2 {1, 2} then U1 = U2 or U1 \

U2 = ;.
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(Soundness) If ⟪M, 1, []⟫⇒∗ ⟪ V ,w ,U⟫

then

symbolic value
w|U = weight|U

(Completeness) If M terminates on s then ⟪M, 1, []⟫⇒∗ ⟪V ,w ,U⟫ s.t. s ∈ U.

(Invariance) If ⟪M, 1, []⟫⇒∗ ⟪ N ,w ,U⟫

then

w is differentiable
boundary of U has measure 0

assumptions on primitives

Theorem

The weight-function is differentiable for almost all terminating traces.
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Conclusion

This talk:
conditions on primitive operations
symbolic execution as a proof technique

differentiability of weight-function on almost all terminating traces

Also in the paper:
extension to almost all traces assuming almost-sure termination
value-function

Future directions:
applications in inference algorithms
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Conclusion

Densities of almost surely terminating probabilistic
programs are differentiable almost everywhere

Carol Mak Luke Ong Hugo Paquet

Dominik Wagner

dominik.wagner@cs.ox.ac.uk
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