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“Can a probabilistic program denote a
distribution with a density that is
not differentiable at some

non-measure-zero set?’”’
[Yang, FSCD 2019]
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Probabilistic Program:

deterministic function from random samples to
value (or failure) and unnormalised density (or weight)

[Kozen 1979, Borgstrom et al. 2016, ...]
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Assumption 2: Of “}(—00,0) has measure 0 for primitives f.

Assumption 3: Primitives are closed under composition.
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Examine weight for all samples
consistent with a branch at once.
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(Invariance) If (M, 1,]]) =* { AL, w, U)) then

m w is differentiable : -
assumptions on primitives

m boundary of U has measure 0

Theorem

The weight-function is differentiable for almost all terminating traces.
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m differentiability of weight-function on almost all terminating traces

Also in the paper:
m extension to almost all traces assuming almost-sure termination

m value-function

Future directions:

m applications in inference algorithms
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