Densities of Almost Surely Terminating

Probabilistic Programs are
Differentiable Almost Everywhere

Carol Mak Luke Ong Hugo Paquet
Dominik Wagner

UNIVERSITY OF

ESOP 2021

Probabilistic Programming:

2/22

Probabilistic Programming:

Make Bayesian Machine
[earning more accessible

2/22

Probabilistic Programming:

Make Bayesian Machine
Learning more accessible™

* to domain experts with basic programming skills

2/22

Probabilistic Programming:

Make Bayesian Machine
Learning more accessible™

* to domain experts with basic programming skills

» separate modelling from inference

2/22

Model

Inference

3/22

Model
PPL =

\

probabilistic programming language

Inference

3/22

e.g. conditionals, recursion,
higher-order functions

Model \
PPL = “regular’ language

\

probabilistic programming language

Inference

3/22

e.g. conditionals, recursion,
higher-order functions

Model \
PPL = “regular’ language

+ sample
+

probabilistic programming language

Inference

3/22

e.g. conditionals, recursion,
higher-order functions

Model \

PPL = “regular’ language

+ sample
+ observations

probabilistic programming language

Inference

3/22

e.g. conditionals, recursion,
higher-order functions

Model \
PPL = “regular’ language

+ sample
+ observations

probabilistic programming language

Inference

3/22

e.g. conditionals, recursion,
higher-order functions

Model \
PPL = “regular’ language

+ sample
+ observations

probabilistic programming language

Inference

m MCMC
— HMC

m Variational
Inference

3/22

e.g. conditionals, recursion,
higher-order functions

Model \
PPL = “regular’ language

+ sample
+ observations

probabilistic programming language

Inference

m MCMC
— HMC

m Variational
Inference

3/22

e.g. conditionals, recursion,
higher-order functions

Model \
PPL = “regular’ language

+ sample
+ observations

probabilistic programming language

Inference

m MCMC
— HMC

m Variational
Inference

— exploit gradients

3/22

e.g. conditionals, recursion,

higher-order functions
N barg;

Model Inference
PPL = “regular’ language (_‘;‘9_’_’?_‘{{?_) m MCMC
+ sample — HMC
+ observations m Variational
Inference

probabilistic programming language m

— exploit gradients

3/22

[Yang, FSCD 2019]

4/22

“Can a probabilistic program denote a
distribution with a density that is
not differentiable at some

non-measure-zero set?’”’
[Yang, FSCD 2019]

4/22

Contributions

Main Result

5/22

Contributions

Main Result

(except for set

The value- and weight-functions ar:/ of measure 0)

differentiable almost everywhere

5/22

Contributions

Main Result

. . (except for set
The value- and weight-functions are of measure 0)

differentiable almost everywhere “provided

1. the program terminates almost surely “—___ (probability non-

termination is 0)

5/22

Contributions

Main Result

. . (except for set
The value- and weight-functions are of measure 0)

differentiable almost everywhere “provided

1. the program terminates almost surely “—___ (probability non-

2. the primitive operations are well-behaved. EITEEG S)

5/22

Contributions

Main Result

. . (except for set
The value- and weight-functions are of measure 0)

differentiable almost everywhere “provided

1. the program terminates almost surely “—___ (probability non-

2. the primitive operations are well-behaved. EITEEG S)

m special case: purely deterministic programs

5/22

Contributions

Main Result

. . (except for set
The value- and weight-functions are of measure 0)

differentiable almost everywhere “provided

1. the program terminates almost surely “—___ (probability non-

2. the primitive operations are well-behaved. EITEEG S)

m special case: purely deterministic programs
m proof technique: symbolic execution

5/22

Contributions

Main Result

. . (except for set
The value- and weight-functions are of measure 0)

differentiable almost everywhere “provided

1. the program terminates almost surely “—___ (probability non-

2. the primitive operations are well-behaved. EITEEG S)

m special case: purely deterministic programs
m proof technique: symbolic execution

This talk:

m focus on weight-function

5/22

Contributions

Main Result

. . (except for set
The value- and weight-functions are of measure 0)

differentiable almost everywhere “provided

1. the program terminates almost surely “—___ (probability non-

2. the primitive operations are well-behaved. EITEEG S)

m special case: purely deterministic programs
m proof technique: symbolic execution

This talk:
m focus on weight-function
m conditions on primitive operations
m symbolic execution and differentiability

5/22

Part |:

Operational Semantics

Probabilistic Program:

7/22

Probabilistic Program:

deterministic function from random samples to
value (or failure) and unnormalised density (or weight)

[Kozen 1979, Borgstrom et al. 2016, ...]

7/22

if sample < 0.5 then score(0) else score(1)

8/22

if sample < 0.5 then score(0) else score(1)

weight([0.1]) =0

8/22

if sample < 0.5 then score(0) else score(1)

0
1

weight([0.1])
weight([0.7])

8/22

Operational Semantics

Configuration:

9/22

Operational Semantics

Configuration: (M, w,s)

9/22

Operational Semantics

Configuration: M,w,s)

|

term accumulated weight trace of samples

9/22

Operational Semantics

Configuration: M, V}V ,S)
term accumulated weight trace of samples

(if sample < 0.5 then score(0) else score(1), 1, [])

9/22

Operational Semantics

Configuration: M, V}V ,S)
term accumulated weight trace of samples

(if sample < 0.5 then score(0) else score(1), 1, [])

9/22

Operational Semantics

Configuration: M,w,s)
term accumulated weight trace of samples

— (if 0.1 < 0.5 then score(0) else score(1), 1, [0.1])

9/22

Operational Semantics

Configuration: M,w,s)
term accumulated weight trace of samples

— (if 0.1 < 0.5 then score(0) else score(1), 1, [0.1])

9/22

Operational Semantics

Configuration: M, V}V ,S)
term accumulated weight trace of samples

— (score(0), 1, [0.1])

9/22

Operational Semantics

Configuration: M, V}V ,S)
term accumulated weight trace of samples

— (score(0), 1,[0.1])

9/22

Operational Semantics

Configuration: M, V}V ,S)
term accumulated weight trace of samples

— (0,0, [0.1])

9/22

Operational Semantics

Configuration: M, V}V ,S)
term accumulated weight trace of samples

— (0,0, [0.1])

weight([0.1]) = 0

9/22

Operational Semantics

Configuration: M, V}V ,S)
term accumulated weight trace of samples

weight(s) =

9/22

Operational Semantics

Configuration: M, V}V ,S)
term accumulated weight trace of samples

weight(s) == {W it (M,L[]) = (V,w,s)

9/22

Operational Semantics

Configuration: M, V/I}/ ,S)
term accumulated weight trace of samples

w if (M 1[]) =*(V,w,s)

0 otherwise

weight(s) = {

9/22

Operational Semantics

Configuration: M | VBV ,S)
term accumulated weight trace of samples

w if (M, 1[]) =*(V,

0 otherwise

weight(s) =

9/22

Part |l

Failure of Differentiability

1. Primitive Operations

11/22

1. Primitive Operations

let x = sample
in score(f(x))

11/22

1. Primitive Operations

let x = sample
in score(f(x))

weight([s]) = f(s)

11/22

1. Primitive Operations

let x = sample
in score(xo(x))

1 ifse@Q

0 otherwise

weight([s]) = xq(s) = {

11/22

1. Primitive Operations

let x = sample
in score(xo(x))

0 otherwise

weight([s]) = xq(s) = {

11/22

1. Primitive Operations

let x = sample
in score(xo(x))

1 ifse@Q

0 otherwise

weight([s]) = xq(s) = {

Assumption 1: Primitives are differentiable.

11/22

2. Conditionals

12/22

2. Conditionals

let x = sample
in if x < 0 then
score(0)
else

score (1)

12/22

2. Conditionals

let x = sample
in if x < 0 then
score(0)
else
score (1)

0 ifs<O
1 otherwise

weight([s]) = {

12/22

2. Conditionals

let x = sample
in if x < 0 then
score(0)
else
score (1)

0 ifs<O
1 otherwise

weight([s]) = {

12/22

2. Conditionals

let x = sample
in if f(x) < 0 then
score(0)
else

score (1)

12/22

2. Conditionals

let x = sample
in if f(x) < 0 then
score(0)
else
score (1)

0 iff(s) <0
1 otherwise

weight([s]) = {

12/22

2. Conditionals

let x = sample
in if f(x) < 0 then
score(0)
else
score (1)

0 iff(s) <O
1 otherwise

weight([s]) = {

12/22

2. Conditionals

let x = sample
in if f(x) < 0 then
score(0)
else
score (1)

0 iff(s) <0
1 otherwise

weight([s]) = {

Assumption 2: Of ~}(—o00,0) has measure 0 for primitives f.

12/22

2. Conditionals

let x = sample
in if g(f(x)) < 0 then
score(0)
else
score (1)

Assumption 2: Of “}(—00,0) has measure 0 for primitives f.

12/22

2. Conditionals

let x = sample
in if g(f(x)) < 0 then
score(0)
else
score (1)

Assumption 2: Of “}(—00,0) has measure 0 for primitives f.

Assumption 3: Primitives are closed under composition.

12/22

3. Recursion

13/22

3. Recursion

let rec enumQ y =

13/22

3. Recursion

let rec enumQ y =

\' return 1 if y is rational,

diverge otherwise

13/22

3. Recursion

let rec enumQ y =

\' return 1 if y is rational,

let x = sample diverge otherwise

in score(enumQ(x))

13/22

3. Recursion

let rec enumQ y =

\' return 1 if y is rational,

let x = sample diverge otherwise

in score(enumQ(x))

1 ifseQ
0 otherwise

weight([s]) = {

13/22

3. Recursion

let rec enumQ y =

\' return 1 if y is rational,

let x = sample diverge otherwise

in score(enumQ(x))

1 ifse@Q
0 otherwise

weight([s]) = {

13/22

Part |11

Symbolic Execution

if sample < 0.5 then score(0) else score(1)

15/22

if sample < 0.5 then score(0) else score(1)

weight([0.1]) = 0

15/22

if sample < 0.5 then score(0) else score(1)

weight([0.1]) = 0

weight([0.11]) = 7?77

15/22

Examine weight for all samples
consistent with a branch at once.

16/22

Symbolic Execution

17/22

Symbolic Execution

(if sample < 0.5 then score(0) else score(1), 1, [])

17/22

Symbolic Execution

(if sample < 0.5 then score(0) else score(1), 1, [])

17/22

Symbolic Execution

— (if 0.1 < 0.5 then score(0) else score(1), 1, [0.1])

17/22

Symbolic Execution

— (if 0.1 < 0.5 then score(0) else score(1), 1, [0.1])

= ((if o < 0.5 then score(0) else score(1),1, (0, 1))

sampling variable

17/22

Symbolic Execution

— (if 0.1 < 0.5 then score(0) else score(1), 1, [0.1])

= ((if o < 0.5 then score(0) else score(1),1, (0, 1))

\ sampling variable

17/22

Symbolic Execution

— (score(0), 1, [0.1])

= ((score(0),1,(0,0.5))

17/22

Symbolic Execution

— (score(0), 1,[0.1])

= ((score(0), 1, (0,0.5))

17/22

Symbolic Execution

— (0,0, [0.1])

= (0,0,(0,0.5))

17/22

Symbolic Execution

— (0,0, [0.1])

= (0,0,(0,0.5))

weight([s]) = 0 whenever s < 0.5

17/22

term accumulated Welght trace of samples

Configuration: M . W S>

18/22

term accumulated Welght trace of samples

Configuration: M W S

Symbolic Configuration: { M , w , U)

18/22

term accumulated weight _ trace of samples

Configuration:\?S M.,w,s)

Symbolic Configuration: M, w,U)

symbolic term

m M: symbolic term
— sampling variables ag, ..., a,
— (delayed operations)

18/22

term accumulated weight _ trace of samples

Configuration:\?S M.,w,s)

Symbolic Configuration: M, w,U)
symbolic term set of traces in branch

m M: symbolic term
— sampling variables ag, ..., a,
— (delayed operations)

m UC(0,1)"

18/22

term accumulated Welght trace of samples

Configuration: M W , S >
Symbolic Configuration: M, w,U)
SymbO/iC term Welght fUnCtion set Of traces in branch

m M: symbolic term
— sampling variables ag, ..., a,
— (delayed operations)

m UC(0,1)"
B w:U— Ry

18/22

Define Symbolic Execution to Closely Mirror
Operational Semantics

19/22

19/22

(Soundness) If (M, 1,[]) =* (vV ,w, U)

20/22

(Soundness) If (M, 1,[]) =* (¥ ,w, U)
symbolic value

20/22

(Soundness) If (M, 1,[]) =* (¥V ,w,U) then

. symbolic value
m wy = weighty

20/22

(Soundness) If (M, 1,[]) =* (¥V ,w,U) then

. symbolic value
m wy = weighty

(Completeness) If M terminates on s

20/22

(Soundness) If (M, 1,[]) =* (¥V ,w,U) then

. symbolic value
m wy = weighty

(Completeness) If M terminates on s then (M, 1,[]) =* (v, w, U)) s.t. s € U.

20/22

(Soundness) If (M, 1,[]) =* (¥V ,w,U) then

. symbolic value
m wy = weighty

(Completeness) If M terminates on s then (M, 1,[]) =* (v, w, U)) s.t. s € U.

(Invariance) If (M, 1,]]) =* (A, w, U)

20/22

(Soundness) If (M, 1,[]) =* (¥V ,w,U) then

. symbolic value
m wy = weighty

(Completeness) If M terminates on s then (M, 1,[]) =* (v, w, U)) s.t. s € U.

(Invariance) If (M, 1,]]) =* { AL, w, U)) then

m w is differentiable , o
assumptions on primitives
m boundary of U has measure 0

20/22

(Soundness) If (M, 1,[]) =* (¥V ,w,U) then

. symbolic value
m wy = weighty

(Completeness) If M terminates on s then (M, 1,[]) =* (v, w, U)) s.t. s € U.

(Invariance) If (M, 1,]]) =* { AL, w, U)) then

m w is differentiable : -
assumptions on primitives

m boundary of U has measure 0

Theorem

The weight-function is differentiable for almost all terminating traces.

20/22

Conclusion

This talk:
m conditions on primitive operations

m symbolic execution as a proof technique

21/22

Conclusion

This talk:
m conditions on primitive operations
m symbolic execution as a proof technique

m differentiability of weight-function on almost all terminating traces

21/22

Conclusion

This talk:
m conditions on primitive operations
m symbolic execution as a proof technique

m differentiability of weight-function on almost all terminating traces

Also in the paper:
m extension to almost all traces assuming almost-sure termination

m value-function

21/22

Conclusion

This talk:
m conditions on primitive operations
m symbolic execution as a proof technique

m differentiability of weight-function on almost all terminating traces

Also in the paper:
m extension to almost all traces assuming almost-sure termination

m value-function

Future directions:

m applications in inference algorithms

21/22

Conclusion

Densities of almost surely terminating probabilistic
programs are differentiable almost everywhere

Carol Mak Luke Ong Hugo Paquet
Dominik Wagner

dominik.wagner@cs.ox.ac.uk

UNIVERSITY OF

22/22

mailto:dominik.wagner@cs.ox.ac.uk

backup slides

NIVERSITY OF

22/22

	Introduction
	

	Operational Semantics
	

	Failure of Differentiability
	

	Symbolic Execution
	

	Conclusion
	

	Appendix
	Backup

