Densities of Almost Surely Terminating Probabilistic Programs are Differentiable Almost Everywhere

Carol Mak Luke Ong Hugo Paquet
Dominik Wagner

ESOP 2021

Probabilistic Programming:

Probabilistic Programming:

Make Bayesian Machine Learning more accessible

Probabilistic Programming:

Make Bayesian Machine Learning more accessible*

* to domain experts with basic programming skills

Probabilistic Programming:

Make Bayesian Machine Learning more accessible*

* to domain experts with basic programming skills
- separate modelling from inference

probabilistic programming language

e.g. conditionals, recursion,
higher-order functions
Model
Inference
PPL = "regular" language

probabilistic programming language
e.g. conditionals, recursion,
higher-order functions
Model

Inference

PPL = "regular" language

+ sample
$+$
probabilistic programming language
e.g. conditionals, recursion,
higher-order functions
Model

Inference

PPL = "regular" language

+ sample
+ observations
probabilistic programming language
e.g. conditionals, recursion,
higher-order functions
Model
Inference
PPL = "regular" language
+ sample
+ observations
probabilistic programming language
e.g. conditionals, recursion, higher-order functions

Model
PPL = "regular" language

+ sample
+ observations
probabilistic programming language

Inference

- MCMC
- HMC

■ Variational Inference
e.g. conditionals, recursion, higher-order functions

Model
PPL = "regular" language

+ sample
+ observations
probabilistic programming language

Inference

- MCMC
- HMC

■ Variational Inference
...
e.g. conditionals, recursion, higher-order functions

Model

PPL = "regular" language

+ sample
+ observations
probabilistic programming language

Inference

- MCMC
- HMC

■ Variational Inference
-..
\rightarrow exploit gradients
e.g. conditionals, recursion,
higher-order functions
Model
PPL = "regular" language

+ sample
+ observations
probabilistic programming language

Inference

- MCMC
- HMC
- Variational Inference
\rightarrow exploit gradients
[Yang, FSCD 2019]
"Can a probabilistic program denote a distribution with a density that is not differentiable at some non-measure-zero set?"
[Yang, FSCD 2019]

Contributions

Main Result

Contributions

Main Result

The value- and weight-functions are
(except for set of measure 0) differentiable almost everywhere

Contributions

Main Result

The value- and weight-functions are of measure 0) differentiable almost everywhere 「provided

1. the program terminates almost surely (probability nontermination is 0)

Contributions

Main Result

The value- and weight-functions are of measure 0)

1. the program terminates almost surely (probability non-
2. the primitive operations are well-behaved. termination is 0)

Contributions

Main Result

The value- and weight-functions are differentiable almost everywhere $\overleftarrow{\text { provided }}$

1. the program terminates almost surely (probability non-
2. the primitive operations are well-behaved. termination is 0)

■ special case: purely deterministic programs

Contributions

Main Result

The value- and weight-functions are
(except for set
differentiable almost everywhere $\overleftarrow{\text { provided }}$

1. the program terminates almost surely (probability non-
2. the primitive operations are well-behaved. termination is 0)

■ special case: purely deterministic programs

- proof technique: symbolic execution

Contributions

Main Result

The value- and weight-functions are
(except for set
differentiable almost everywhere $\overleftarrow{\text { provided }}$

1. the program terminates almost surely (probability non-
2. the primitive operations are well-behaved. termination is 0)

■ special case: purely deterministic programs

- proof technique: symbolic execution

This talk:

- focus on weight-function

Contributions

Main Result

The value- and weight-functions are

1. the program terminates almost surely (probability non-
2. the primitive operations are well-behaved.

■ special case: purely deterministic programs

- proof technique: symbolic execution

This talk:

- focus on weight-function
- conditions on primitive operations
- symbolic execution and differentiability

Part I:
 Operational Semantics

Recap

Probabilistic Program:

Probabilistic Program:

deterministic function from random samples to value (or failure) and unnormalised density (or weight)
[Kozen 1979, Borgström et al. 2016, ...]
if sample $<\underline{0.5}$ then score(으) else score(1)
if sample $<\underline{0.5}$ then score(응 else score(1)

$$
\text { weight }([0.1])=0
$$

if sample $<\underline{0.5}$ then score(으) else score(1)

> weight $([0.1])=0$
> weight $([0.7])=1$

Operational Semantics

Configuration:

Operational Semantics

Configuration: $\langle M, w, \mathbf{s}\rangle$

Operational Semantics

Operational Semantics

\langle if sample $<\underline{0.5}$ then score(으) else score(노), 1, [] \rangle

Operational Semantics

\langle if sample $<\underline{0.5}$ then score(으) else score($\underline{1}$), 1, [] \rangle

Operational Semantics

$\rightarrow\langle$ if $\underline{0.1}<\underline{0.5}$ then score(ㅇ) else score(1), $1,[0.1]\rangle$

Operational Semantics

$\rightarrow\langle$ if $\underline{0.1}<\underline{0.5}$ then score($\underline{0}$) else score($(\underline{1}), 1,[0.1]\rangle$

Operational Semantics

Operational Semantics

Operational Semantics

Configuration: $\langle\uparrow M, \underbrace{w, \mathbf{s}\rangle}_{\text {term }}$ accumulated weight \quad trace of samples

$$
\rightarrow\langle\underline{0}, 0,[0.1]\rangle
$$

Operational Semantics

Configuration: $\langle\underset{\text { term }}{\text { accumulated weight }}, \underset{\text { trace of samples }}{w, \mathbf{s}\rangle}$

$$
\begin{gathered}
\quad \rightarrow\langle\underline{0}, 0,[0.1]\rangle \\
\text { weight }([0.1])=0
\end{gathered}
$$

Operational Semantics

weight(s) :=

Operational Semantics

Operational Semantics

Operational Semantics

Part II:
 Failure of Differentiability

1. Primitive Operations

1. Primitive Operations

let $x=$ sample
in $\operatorname{score}(f(x))$

1. Primitive Operations

> let $x=$ sample
> in $\quad \operatorname{score}(f(x))$

$$
\text { weight }([s])=f(s)
$$

1. Primitive Operations

$$
\begin{aligned}
& \text { let } x=\text { sample } \\
& \text { in } \operatorname{score}\left(\chi_{\mathbb{Q}}(x)\right)
\end{aligned}
$$

$$
\text { weight }([s])=\chi_{\mathbb{Q}}(s)= \begin{cases}1 & \text { if } s \in \mathbb{Q} \\ 0 & \text { otherwise }\end{cases}
$$

1. Primitive Operations

$$
\begin{aligned}
& \text { let } x=\text { sample } \\
& \text { in } \operatorname{score}(\chi \mathbb{Q}(x))
\end{aligned}
$$

$$
\text { weight }([s])=\chi_{\mathbb{Q}}(s)= \begin{cases}1 & \text { if } s \in \mathbb{Q} \\ 0 & \text { otherwise }\end{cases}
$$

1. Primitive Operations

$$
\begin{aligned}
& \text { let } x=\text { sample } \\
& \text { in } \operatorname{score}\left(\chi_{\mathbb{Q}}(x)\right)
\end{aligned}
$$

$$
\text { weight }([s])=\chi_{\mathbb{Q}}(s)= \begin{cases}1 & \text { if } s \in \mathbb{Q} \\ 0 & \text { otherwise }\end{cases}
$$

Assumption 1: Primitives are differentiable.

2. Conditionals

2. Conditionals

$$
\begin{gathered}
\text { let } x=\text { sample } \\
\text { in if } x<0 \text { then } \\
\text { score }(0) \\
\text { else } \\
\text { score }(1)
\end{gathered}
$$

2. Conditionals

$$
\begin{gathered}
\text { let } x=\text { sample } \\
\text { in if } x<0 \text { then } \\
\text { score }(0) \\
\text { else } \\
\text { score }(1)
\end{gathered}
$$

$$
\text { weight }([s])= \begin{cases}0 & \text { if } s<0 \\ 1 & \text { otherwise }\end{cases}
$$

2. Conditionals

$$
\begin{gathered}
\text { let } x=\text { sample } \\
\text { in if } x<0 \text { then } \\
\text { score }(0) \\
\text { else } \\
\text { score }(1)
\end{gathered}
$$

$$
\text { weight }([s])= \begin{cases}0 & \text { if } s<0 \\ 1 & \text { otherwise }\end{cases}
$$

2. Conditionals

$$
\begin{gathered}
\text { let } x=\text { sample } \\
\text { in if } f(x)<0 \text { then } \\
\text { score }(0) \\
\text { else } \\
\text { score }(1)
\end{gathered}
$$

2. Conditionals

$$
\begin{gathered}
\text { let } x=\text { sample } \\
\text { in if } f(x)<0 \text { then } \\
\text { score }(0) \\
\text { else } \\
\text { score }(1)
\end{gathered}
$$

$$
\text { weight }([s])= \begin{cases}0 & \text { if } \mathrm{f}(\mathrm{~s})<0 \\ 1 & \text { otherwise }\end{cases}
$$

2. Conditionals

$$
\begin{aligned}
& \text { let } x=\text { sample } \\
& \text { in if } \mathrm{f}(\mathrm{x})<0 \text { then } \\
& \text { score }(0) \\
& \text { else } \\
& \quad \text { score }(1) \\
& \text { weight }([s])= \begin{cases}0 & \text { if } \mathrm{f}(\mathrm{~s})<0 \\
1 & \text { otherwise }\end{cases}
\end{aligned}
$$

2. Conditionals

$$
\begin{aligned}
& \text { let } x=\text { sample } \\
& \text { in if } \mathrm{f}(\mathrm{x})<0 \text { then } \\
& \text { score }(0) \\
& \text { else } \\
& \quad \text { score }(1) \\
& \text { weight }([s])= \begin{cases}0 & \text { if } \mathrm{f}(\mathrm{~s})<0 \\
1 & \text { otherwise }\end{cases}
\end{aligned}
$$

Assumption 2: $\partial f^{-1}(-\infty, 0)$ has measure 0 for primitives f.

2. Conditionals

$$
\begin{gathered}
\text { let } x=\text { sample } \\
\text { in if } g(f(x))<0 \text { then } \\
\operatorname{score}(0) \\
\text { else } \\
\text { score }(1)
\end{gathered}
$$

Assumption 2: $\partial f^{-1}(-\infty, 0)$ has measure 0 for primitives f.

2. Conditionals

$$
\begin{gathered}
\text { let } x=\text { sample } \\
\text { in if } g(f(x))<0 \text { then } \\
\text { score }(0) \\
\text { else } \\
\text { score }(1)
\end{gathered}
$$

Assumption 2: $\partial f^{-1}(-\infty, 0)$ has measure 0 for primitives f.
Assumption 3: Primitives are closed under composition.

3. Recursion

3. Recursion

let rec enumQ $y=\ldots$

3. Recursion

$$
\text { let rec enumQ } y=\ldots . \quad \begin{aligned}
& \text { return } 1 \text { if } \mathrm{y} \text { is rational, } \\
& \text { diverge otherwise }
\end{aligned}
$$

3. Recursion

$$
\begin{array}{ll}
\text { let } \text { rec enumQ } y=\ldots & \\
\text { let } x=\operatorname{sample} & \text { diverge otherwise } 1 \text { if } y \text { is rational, } \\
\text { in } \operatorname{score}(\operatorname{enum} Q(x)) &
\end{array}
$$

3. Recursion

$$
\begin{array}{ll}
\text { let rec enumQ } y=\ldots & \text { return } 1 \text { if } y \text { is rational, } \\
\text { let } x=\text { sample } & \text { diverge otherwise } \\
\text { in } \operatorname{score}(\operatorname{enumQ}(x)) &
\end{array}
$$

$$
\text { weight }([s])= \begin{cases}1 & \text { if } s \in \mathbb{Q} \\ 0 & \text { otherwise }\end{cases}
$$

3. Recursion

Part III:
 Symbolic Execution

if sample $<\underline{0.5}$ then score $(\underline{0})$ else score $(\underline{1})$
if sample $<\underline{0.5}$ then score($\underline{0}$) else score(1)

$$
\text { weight }([0.1])=0
$$

if sample $<\underline{0.5}$ then score($\underline{0}$) else score(1)

$$
\begin{aligned}
\text { weight }([0.1]) & =0 \\
\text { weight }([0.11]) & =? ? ?
\end{aligned}
$$

Examine weight for all samples consistent with a branch at once.

Symbolic Execution

Symbolic Execution

\langle if sample $<\underline{0.5}$ then score(으) else score(1), 1, [] \rangle

Symbolic Execution

\langle if sample $<\underline{0.5}$ then score(으) else score(1), $1,[]\rangle$

Symbolic Execution

$\rightarrow\langle$ if $\underline{0.1}<\underline{0.5}$ then score($\underline{0}$) else score($\underline{1}), 1,[0.1]\rangle$

Symbolic Execution

$$
\rightarrow\langle\text { if } \underline{0.1}<\underline{0.5} \text { then score(ㅇ) else score(} \underline{1}), 1,[0.1]\rangle
$$

$$
\begin{gathered}
\Rightarrow\langle\text { if } \alpha<\underline{0.5} \text { then score }(\underline{0}) \text { else score }(\underline{1}), 1,(\mathbf{0}, \mathbf{1})\rangle\rangle \\
\text { sampling variable }
\end{gathered}
$$

Symbolic Execution

$$
\rightarrow\langle\text { if } \underline{0.1}<\underline{0.5} \text { then score(} \underline{0}) \text { else score }(\underline{1}), 1,[0.1]\rangle
$$

$$
\Rightarrow\langle\mathrm{if} \alpha \underset{\text { sampling variable }}{\langle 0.5} \text { then score(}(\underline{0}) \text { else score }(\underline{1}), 1,(0,1)\rangle
$$

Symbolic Execution

$$
\rightarrow\langle\text { score }(\underline{0}), 1,[0.1]\rangle
$$

$$
\Rightarrow\langle\text { score(}(\underline{0}), 1,(0,0.5)\rangle
$$

Symbolic Execution

$$
\rightarrow\langle\operatorname{score}(\underline{0}), 1,[0.1]\rangle
$$

$$
\Rightarrow\langle\text { score }(\mathbf{0}), 1,(0,0.5)\rangle
$$

Symbolic Execution

$$
\rightarrow\langle\underline{0}, 0,[0.1]\rangle
$$

$\Rightarrow\langle\underline{0}, 0,(0,0.5)\rangle$

Symbolic Execution

$$
\rightarrow\langle\underline{0}, 0,[0.1]\rangle
$$

$$
\Rightarrow\langle\underline{0}, 0,(0,0.5)\rangle
$$

Symbolic Configuration: $\langle\langle\mathcal{M}, w, U\rangle$

Symbolic Configuration: $\| \rightarrow \mathcal{M}, w, \cup\rangle$
 symbolic term

- M: symbolic term
- sampling variables $\alpha_{1}, \ldots, \alpha_{n}$
- (delayed operations)

■ M : symbolic term

- sampling variables $\alpha_{1}, \ldots, \alpha_{n}$
- (delayed operations)
- $U \subseteq(0,1)^{n}$

- M : symbolic term
- sampling variables $\alpha_{1}, \ldots, \alpha_{n}$
- (delayed operations)
- $U \subseteq(0,1)^{n}$
- $w: U \rightarrow \mathbb{R}_{\geq 0}$

Define Symbolic Execution to Closely Mirror Operational Semantics

Now, we introduce the following

$$
\begin{aligned}
& \left.\|\left(\lambda_{y}, \mathcal{M}\right) \mathcal{V}, w, U\right\rangle \Rightarrow\langle\mathcal{M}[\mathcal{V} / y], w, U\rangle \\
& \left.\left.\mathcal{V}_{1}, \ldots, \mathcal{V}_{\ell}\right), w, U\right\rangle \Rightarrow \| \Gamma
\end{aligned}
$$

$$
\begin{aligned}
\left.\left.\| \underline{f}\left(\mathcal{V}_{1}, \ldots, \mathcal{V}_{\ell}\right), w, U\right\rangle\right\rangle & \Rightarrow\langle\langle\mathcal{M}[\mathcal{V} / y], w, U\rangle\rangle
\end{aligned}
$$

$$
\begin{aligned}
&\left.\| \underline{f}\left(\mathcal{V}_{1}, \ldots, \mathcal{V}_{\ell}\right), w, U\right\rangle \Rightarrow\langle\langle\mathcal{M}[\mathcal{V} / y], w, U\rangle \\
& \quad\left\langle Y\left(\lambda_{1}, w\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
\| Y(\lambda y \cdot \mathcal{M}), w, U\rangle & \Rightarrow \|\left\langle[f]\left(\mathcal{V}_{1}, \ldots, \mathcal{V}_{\ell}\right), w, \operatorname{dom}\| \| f\left(\mathcal{V}_{1},\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
\langle i f(\mathcal{V} \leq 0, \mathcal{M}, \mathcal{N}), w, U\rangle & \Rightarrow\left\langle\mathcal{M}, w,\|\mathcal{V}\|^{-1}(-\infty, w] \cap \| \mathcal{V}, w\right\rangle \\
& \| \text { sample, } w, \tau \|
\end{aligned}
$$

$$
\begin{aligned}
& \text { In the rule for sample, } U^{\prime}:=\left\{\left(\boldsymbol{r}, \boldsymbol{s}+\left[s^{\prime}\right]\right) \quad\left(U \subseteq \mathbb{R}^{m} \times S_{n}\right)\right. \\
& \left.\left.\left[s^{\prime}\right]\right):=w(\boldsymbol{r}, \boldsymbol{s}) ; \text { in the } \|^{-1}[0, \infty) \cap U\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left[s^{\prime}\right]\right):=w(\boldsymbol{r}, \boldsymbol{s}) \text {; in the } U^{\prime}:=\left\{\left(\boldsymbol{r}, \boldsymbol{s} H\left[s^{\prime}\right]\right) \mid(\boldsymbol{r}, \boldsymbol{s})\right. \\
& \text { The rule } f_{\text {er }} \text { aro }
\end{aligned}
$$

cially, the rule for sample to closely mirror $\| \cdot w)(\boldsymbol{r}, \boldsymbol{s}):=\|\mathcal{V}\|(\boldsymbol{r})$ and $w^{\prime}(\boldsymbol{r}, \boldsymbol{s}+$ $\|\mathcal{V}\|(\boldsymbol{r}, \boldsymbol{s})$ ditionals split introduces a "fres their concrete $\|\mathcal{V}\|(\boldsymbol{r}, \boldsymbol{s}) \cdot w(\boldsymbol{r}, \boldsymbol{s})$. duced for ≤ 0 or $\|\mathcal{V}\|(\boldsymbol{r}, \boldsymbol{s})$ last component" sampling variabterparts. Cru it is, for examical reason: \quad. The "delay" $U \subseteq \mathbb{R}^{m} \times \mathbb{S}_{n}$ accorle, and the two dy. 1.5 for $s_{1}=0$. unclear whethmately, to enablaction (seconding to whether Finally we lift. symbolic evaluationis to arbitrary symould correspond to λ. Otherwise symbolic evaluation contexts:
(Soundness) If $\langle M, 1,[]\rangle \Rightarrow^{*}\langle\langle\mathcal{V}, w, U\rangle$
(Soundness) If $\left\langle\langle M, 1,[]\rangle \Rightarrow^{*}\langle 《 \mathcal{V}, w, U\rangle\right.$
(Soundness) If $\langle M M, 1,[]\rangle \Rightarrow^{*}\left\langle\left\langle\mathcal{V}_{\kappa}, w, U\right\rangle\right.$ then

- $w_{\mathrm{U}}=$ weight $_{\text {U }}$
(Soundness) If $\left\langle\langle M, 1,[]\rangle \Rightarrow^{*}\left\langle\left\langle\mathcal{V}_{\kappa}, w, U\right\rangle\right\rangle\right.$ then
- $w_{\mathrm{U}}=$ weight $_{\mathrm{U}}$
(Completeness) If M terminates on s
(Soundness) If $\left\langle\langle M, 1,[]\rangle \Rightarrow^{*}\langle\langle\underset{\kappa}{\mathcal{V}}, w, U\rangle\rangle\right.$ then
- $w_{\mathrm{U}}=$ weight $_{\text {U }}$
(Completeness) If M terminates on s then $\langle M, 1,[]\rangle \Rightarrow^{*}\langle\langle\mathcal{V}, w, U\rangle$ s.t. $\mathrm{s} \in \mathrm{U}$.
(Soundness) If $\left\langle\langle M, 1,[]\rangle \Rightarrow^{*}\left\langle\left\langle\mathcal{V}_{\kappa}, w, U\right\rangle\right\rangle\right.$ then
- $w_{\mathrm{U}}=$ weight $_{\text {U }}$
(Completeness) If M terminates on s then $\langle M, 1,[]\rangle \Rightarrow^{*}\langle\langle\mathcal{V}, w, U\rangle$ s.t. $\mathrm{s} \in \mathrm{U}$.
(Invariance) If $\langle M M, 1,[]\rangle \Rightarrow^{*}\langle\langle\mathcal{N}, w, U\rangle$
(Soundness) If $\left\langle\langle M, 1,[]\rangle \Rightarrow^{*}\langle\langle\mathcal{V}, w, U\rangle\rangle\right.$ then
- $w_{\mathrm{U}}=$ weight $_{\text {U }}$
(Completeness) If M terminates on s then $\langle M, 1,[]\rangle \Rightarrow^{*}\langle\langle\mathcal{V}, w, U\rangle$ s.t. $\mathrm{s} \in \mathrm{U}$.
(Invariance) If $\langle\| M, 1,[]\rangle \Rightarrow{ }^{*}\langle\langle\mathcal{N}, w, U\rangle\rangle$ then
$\left.\begin{array}{l}\text { - } w \text { is differentiable } \\ \text { - boundary of } U \text { has measure } 0\end{array}\right\}$ assumptions on primitives
(Soundness) If $\langle M, 1,[]\rangle \Rightarrow^{*}\langle\langle v, w, U\rangle$ then
- $w_{\mathrm{u}} \mathrm{U}=$ weight $_{\mathrm{U}}$
(Completeness) If M terminates on s then $\langle M, 1,[]\rangle \Rightarrow^{*}\langle\mathcal{V}, w, U\rangle$ s.t. $\mathrm{s} \in \mathrm{U}$.
(Invariance) If $\langle M, 1,[]\rangle \Rightarrow^{*}\langle\langle\mathcal{N}, w, U\rangle$ then
$\left.\begin{array}{l}\text { - } w \text { is differentiable } \\ \text { - boundary of } U \text { has measure } 0\end{array}\right\}$ assumptions on primitives

Theorem

The weight-function is differentiable for almost all terminating traces.

Conclusion

This talk:

- conditions on primitive operations
- symbolic execution as a proof technique

Conclusion

This talk:

- conditions on primitive operations
- symbolic execution as a proof technique
- differentiability of weight-function on almost all terminating traces

Conclusion

This talk:

- conditions on primitive operations
- symbolic execution as a proof technique
- differentiability of weight-function on almost all terminating traces

Also in the paper:
■ extension to almost all traces assuming almost-sure termination

- value-function

Conclusion

This talk:

- conditions on primitive operations
- symbolic execution as a proof technique
- differentiability of weight-function on almost all terminating traces

Also in the paper:
■ extension to almost all traces assuming almost-sure termination

- value-function

Future directions:

- applications in inference algorithms

Conclusion

Densities of almost surely terminating probabilistic programs are differentiable almost everywhere

Carol Mak Luke Ong Hugo Paquet
Dominik Wagner
dominik.wagner@cs.ox.ac.uk

backup slides

