
Densities of Almost Surely Terminating
Probabilistic Programs are

Differentiable Almost Everywhere

Carol Mak Luke Ong Hugo Paquet

Dominik Wagner

ESOP 2021

Probabilistic Programming:

Make Bayesian Machine
Learning more accessible

*
* to domain experts with basic programming skills

I separate modelling from inference

2/22

Probabilistic Programming:

Make Bayesian Machine
Learning more accessible

*
* to domain experts with basic programming skills

I separate modelling from inference

2/22

Probabilistic Programming:

Make Bayesian Machine
Learning more accessible*

* to domain experts with basic programming skills

I separate modelling from inference

2/22

Probabilistic Programming:

Make Bayesian Machine
Learning more accessible*

* to domain experts with basic programming skills

I separate modelling from inference

2/22

e.g. conditionals, recursion,
higher-order functions

Model

.
+obs
+obs

Inference

MCMC

− HMC

Variational
Inference
...

hard!

probabilistic programming language

→ exploit gradients

3/22

e.g. conditionals, recursion,
higher-order functions

Model

PPL =
+obs
+obs

Inference

MCMC

− HMC

Variational
Inference
...

hard!

probabilistic programming language

→ exploit gradients

3/22

e.g. conditionals, recursion,
higher-order functions

Model

PPL = “regular” language
+obs +
+obs +

Inference

MCMC

− HMC

Variational
Inference
...

hard!

probabilistic programming language

→ exploit gradients

3/22

e.g. conditionals, recursion,
higher-order functions

Model

PPL = “regular” language
+obs + sample
+obs +

Inference

MCMC

− HMC

Variational
Inference
...

hard!

probabilistic programming language

→ exploit gradients

3/22

e.g. conditionals, recursion,
higher-order functions

Model

PPL = “regular” language
+obs + sample
+obs + observations

Inference

MCMC

− HMC

Variational
Inference
...

hard!

probabilistic programming language

→ exploit gradients

3/22

e.g. conditionals, recursion,
higher-order functions

Model

PPL = “regular” language
+obs + sample
+obs + observations

Inference

MCMC

− HMC

Variational
Inference
...

hard!

probabilistic programming language

→ exploit gradients

3/22

e.g. conditionals, recursion,
higher-order functions

Model

PPL = “regular” language
+obs + sample
+obs + observations

Inference

MCMC
− HMC

Variational
Inference
...

hard!

probabilistic programming language

→ exploit gradients

3/22

e.g. conditionals, recursion,
higher-order functions

Model

PPL = “regular” language
+obs + sample
+obs + observations

Inference

MCMC
− HMC

Variational
Inference
...

hard!

probabilistic programming language

→ exploit gradients

3/22

e.g. conditionals, recursion,
higher-order functions

Model

PPL = “regular” language
+obs + sample
+obs + observations

Inference

MCMC
− HMC

Variational
Inference
...

hard!

probabilistic programming language

→ exploit gradients

3/22

e.g. conditionals, recursion,
higher-order functions

Model

PPL = “regular” language
+obs + sample
+obs + observations

Inference

MCMC
− HMC

Variational
Inference
...

hard!

probabilistic programming language

→ exploit gradients

correct?

3/22

“Can a probabilistic program denote a
distribution with a density that is
not differentiable at some
non-measure-zero set?”

[Yang, FSCD 2019]

4/22

“Can a probabilistic program denote a
distribution with a density that is
not differentiable at some
non-measure-zero set?”

[Yang, FSCD 2019]

4/22

Contributions

Main Result

The value- and weight-functions are
differentiable almost everywhere

provided

1. the program terminates almost surely

2. the primitive operations are well-behaved.

special case: purely deterministic programs
proof technique: symbolic execution

This talk:
focus on weight-function
conditions on primitive operations
symbolic execution and differentiability

5/22

Contributions

Main Result

The value- and weight-functions are
differentiable almost everywhere

provided

1. the program terminates almost surely

2. the primitive operations are well-behaved.

(except for set
of measure 0)

special case: purely deterministic programs
proof technique: symbolic execution

This talk:
focus on weight-function
conditions on primitive operations
symbolic execution and differentiability

5/22

Contributions

Main Result

The value- and weight-functions are
differentiable almost everywhere provided

1. the program terminates almost surely

2. the primitive operations are well-behaved.

(except for set
of measure 0)

(probability non-
termination is 0)

special case: purely deterministic programs
proof technique: symbolic execution

This talk:
focus on weight-function
conditions on primitive operations
symbolic execution and differentiability

5/22

Contributions

Main Result

The value- and weight-functions are
differentiable almost everywhere provided

1. the program terminates almost surely

2. the primitive operations are well-behaved.

(except for set
of measure 0)

(probability non-
termination is 0)

special case: purely deterministic programs
proof technique: symbolic execution

This talk:
focus on weight-function
conditions on primitive operations
symbolic execution and differentiability

5/22

Contributions

Main Result

The value- and weight-functions are
differentiable almost everywhere provided

1. the program terminates almost surely

2. the primitive operations are well-behaved.

(except for set
of measure 0)

(probability non-
termination is 0)

special case: purely deterministic programs

proof technique: symbolic execution

This talk:
focus on weight-function
conditions on primitive operations
symbolic execution and differentiability

5/22

Contributions

Main Result

The value- and weight-functions are
differentiable almost everywhere provided

1. the program terminates almost surely

2. the primitive operations are well-behaved.

(except for set
of measure 0)

(probability non-
termination is 0)

special case: purely deterministic programs
proof technique: symbolic execution

This talk:
focus on weight-function
conditions on primitive operations
symbolic execution and differentiability

5/22

Contributions

Main Result

The value- and weight-functions are
differentiable almost everywhere provided

1. the program terminates almost surely

2. the primitive operations are well-behaved.

(except for set
of measure 0)

(probability non-
termination is 0)

special case: purely deterministic programs
proof technique: symbolic execution

This talk:
focus on weight-function

conditions on primitive operations
symbolic execution and differentiability

5/22

Contributions

Main Result

The value- and weight-functions are
differentiable almost everywhere provided

1. the program terminates almost surely

2. the primitive operations are well-behaved.

(except for set
of measure 0)

(probability non-
termination is 0)

special case: purely deterministic programs
proof technique: symbolic execution

This talk:
focus on weight-function
conditions on primitive operations
symbolic execution and differentiability

5/22

Part I:
Operational Semantics

Recap

Probabilistic Program:

deterministic function from random samples to
value (or failure) and unnormalised density (or weight)

[Kozen 1979, Borgström et al. 2016, ...]

7/22

Probabilistic Program:

deterministic function from random samples to
value (or failure) and unnormalised density (or weight)

[Kozen 1979, Borgström et al. 2016, ...]

7/22

if sample < 0.5 then score(0) else score(1)

weight([0.1]) = 0

weight([0.7]) = 1

8/22

if sample < 0.5 then score(0) else score(1)

weight([0.1]) = 0

weight([0.7]) = 1

8/22

if sample < 0.5 then score(0) else score(1)

weight([0.1]) = 0
weight([0.7]) = 1

8/22

Operational Semantics

Configuration:

〈 M , w , s 〉

term accumulated weight trace of samples

9/22

Operational Semantics

Configuration: 〈 M , w , s 〉

term accumulated weight trace of samples

9/22

Operational Semantics

Configuration: 〈 M , w , s 〉

term accumulated weight trace of samples

9/22

Operational Semantics

Configuration: 〈 M , w , s 〉

term accumulated weight trace of samples

〈if sample < 0.5 then score(0) else score(1), 1, []〉

9/22

Operational Semantics

Configuration: 〈 M , w , s 〉

term accumulated weight trace of samples

〈if sample < 0.5 then score(0) else score(1), 1, []〉

9/22

Operational Semantics

Configuration: 〈 M , w , s 〉

term accumulated weight trace of samples

→ 〈if 0.1 < 0.5 then score(0) else score(1), 1, [0.1]〉

9/22

Operational Semantics

Configuration: 〈 M , w , s 〉

term accumulated weight trace of samples

→ 〈if 0.1 < 0.5 then score(0) else score(1), 1, [0.1]〉

9/22

Operational Semantics

Configuration: 〈 M , w , s 〉

term accumulated weight trace of samples

→ 〈score(0), 1, [0.1]〉

9/22

Operational Semantics

Configuration: 〈 M , w , s 〉

term accumulated weight trace of samples

→ 〈score(0), 1, [0.1]〉

9/22

Operational Semantics

Configuration: 〈 M , w , s 〉

term accumulated weight trace of samples

→ 〈0,0, [0.1]〉

9/22

Operational Semantics

Configuration: 〈 M , w , s 〉

term accumulated weight trace of samples

→ 〈0,0, [0.1]〉

weight([0.1]) = 0

9/22

Operational Semantics

Configuration: 〈 M , w , s 〉

term accumulated weight trace of samples

weight(s) :=

{
w if 〈M , 1, []〉 →∗ 〈V ,w, s〉

0 otherwise

9/22

Operational Semantics

Configuration: 〈 M , w , s 〉

term accumulated weight trace of samples

weight(s) :=

{
w if 〈M , 1, []〉 →∗ 〈V ,w, s〉

0 otherwise

9/22

Operational Semantics

Configuration: 〈 M , w , s 〉

term accumulated weight trace of samples

weight(s) :=

{
w if 〈M , 1, []〉 →∗ 〈V ,w, s〉
0 otherwise

9/22

Operational Semantics

Configuration: 〈 M , w , s 〉

term accumulated weight trace of samples

weight(s) :=

{
w if 〈M , 1, []〉 →∗ 〈V ,w, s〉
0 otherwise

differentiablealmost everywhere?

9/22

Part II:
Failure of Differentiability

1. Primitive Operations

l e t x = sample
in s c o r e ((x))

weight([s]) =

=

{
1 if s ∈ Q
0 otherwise

Assumption 1: Primitives are differentiable.

11/22

1. Primitive Operations

l e t x = sample
in s c o r e (f(x))

weight([s]) =

=

{
1 if s ∈ Q
0 otherwise

Assumption 1: Primitives are differentiable.

11/22

1. Primitive Operations

l e t x = sample
in s c o r e (f(x))

weight([s]) = f (s)

=

{
1 if s ∈ Q
0 otherwise

Assumption 1: Primitives are differentiable.

11/22

1. Primitive Operations

l e t x = sample
in s c o r e (χQ (x))

weight([s]) = χQ(s) =

{
1 if s ∈ Q
0 otherwise

Assumption 1: Primitives are differentiable.

11/22

1. Primitive Operations

not differentiable
anywhere

l e t x = sample
in s c o r e (χQ (x))

weight([s]) = χQ(s) =

{
1 if s ∈ Q
0 otherwise

Assumption 1: Primitives are differentiable.

11/22

1. Primitive Operations

not differentiable
anywhere

l e t x = sample
in s c o r e (χQ (x))

weight([s]) = χQ(s) =

{
1 if s ∈ Q
0 otherwise

Assumption 1: Primitives are differentiable.

11/22

2. Conditionals

l e t x = sample
in i f x < 0 then

s c o r e (0)
e l se

s c o r e (1)

weight([s]) =

{
0 if s < 0
1 otherwise

3

Assumption 2: ∂f −1(−∞, 0) has measure 0 for primitives f .

Assumption 3: Primitives are closed under composition.

12/22

2. Conditionals

l e t x = sample
in i f x < 0 then

s c o r e (0)
e l se

s c o r e (1)

weight([s]) =

{
0 if s < 0
1 otherwise

3

Assumption 2: ∂f −1(−∞, 0) has measure 0 for primitives f .

Assumption 3: Primitives are closed under composition.

12/22

2. Conditionals

l e t x = sample
in i f x < 0 then

s c o r e (0)
e l se

s c o r e (1)

weight([s]) =

{
0 if s < 0
1 otherwise

3
Assumption 2: ∂f −1(−∞, 0) has measure 0 for primitives f .

Assumption 3: Primitives are closed under composition.

12/22

2. Conditionals

l e t x = sample
in i f x < 0 then

s c o r e (0)
e l se

s c o r e (1) not differentiable
at 0

weight([s]) =

{
0 if s < 0
1 otherwise

3

Assumption 2: ∂f −1(−∞, 0) has measure 0 for primitives f .

Assumption 3: Primitives are closed under composition.

12/22

2. Conditionals

l e t x = sample
in i f f(x) < 0 then

s c o r e (0)
e l se

s c o r e (1)

weight([s]) =

{
0 if s < 0
1 otherwise

3

Assumption 2: ∂f −1(−∞, 0) has measure 0 for primitives f .

Assumption 3: Primitives are closed under composition.

12/22

2. Conditionals

l e t x = sample
in i f f(x) < 0 then

s c o r e (0)
e l se

s c o r e (1)

weight([s]) =

{
0 if f(s) < 0
1 otherwise

3
Assumption 2: ∂f −1(−∞, 0) has measure 0 for primitives f .

Assumption 3: Primitives are closed under composition.

12/22

2. Conditionals

l e t x = sample
in i f f(x) < 0 then

s c o r e (0)
e l se

s c o r e (1) not differentiable
at ∂f −1(−∞, 0)

weight([s]) =

{
0 if f(s) < 0
1 otherwise

3
Assumption 2: ∂f −1(−∞, 0) has measure 0 for primitives f .

Assumption 3: Primitives are closed under composition.

12/22

2. Conditionals

l e t x = sample
in i f f(x) < 0 then

s c o r e (0)
e l se

s c o r e (1) not differentiable
at ∂f −1(−∞, 0)

weight([s]) =

{
0 if f(s) < 0
1 otherwise

3

Assumption 2: ∂f −1(−∞, 0) has measure 0 for primitives f .

Assumption 3: Primitives are closed under composition.

12/22

2. Conditionals

l e t x = sample
in i f g(f(x)) < 0 then

s c o r e (0)
e l se

s c o r e (1)

weight([s]) =

{
0 if f(s) < 0
1 otherwise

3

Assumption 2: ∂f −1(−∞, 0) has measure 0 for primitives f .

Assumption 3: Primitives are closed under composition.

12/22

2. Conditionals

l e t x = sample
in i f g(f(x)) < 0 then

s c o r e (0)
e l se

s c o r e (1)

weight([s]) =

{
0 if f(s) < 0
1 otherwise

3

Assumption 2: ∂f −1(−∞, 0) has measure 0 for primitives f .

Assumption 3: Primitives are closed under composition.

12/22

3. Recursion

return 1 if y is rational,
diverge otherwise

l e t rec enumQ y = . . .

l e t x = sample
in s c o r e (enumQ(x))

weight([s]) =

{
1 if s ∈ Q
0 otherwise

13/22

3. Recursion

return 1 if y is rational,
diverge otherwise

l e t rec enumQ y = . . .

l e t x = sample
in s c o r e (enumQ(x))

weight([s]) =

{
1 if s ∈ Q
0 otherwise

13/22

3. Recursion

return 1 if y is rational,
diverge otherwise

l e t rec enumQ y = . . .

l e t x = sample
in s c o r e (enumQ(x))

weight([s]) =

{
1 if s ∈ Q
0 otherwise

13/22

3. Recursion

return 1 if y is rational,
diverge otherwise

l e t rec enumQ y = . . .

l e t x = sample
in s c o r e (enumQ(x))

weight([s]) =

{
1 if s ∈ Q
0 otherwise

13/22

3. Recursion

return 1 if y is rational,
diverge otherwise

l e t rec enumQ y = . . .

l e t x = sample
in s c o r e (enumQ(x))

weight([s]) =

{
1 if s ∈ Q
0 otherwise

13/22

3. Recursion

return 1 if y is rational,
diverge otherwise

l e t rec enumQ y = . . .

l e t x = sample
in s c o r e (enumQ(x))

not differentiable
anywhere

weight([s]) =

{
1 if s ∈ Q
0 otherwise

13/22

Part III:
Symbolic Execution

if sample < 0.5 then score(0) else score(1)

weight([0.1]) = 0

weight([0.11]) = ???

15/22

if sample < 0.5 then score(0) else score(1)

weight([0.1]) = 0

weight([0.11]) = ???

15/22

if sample < 0.5 then score(0) else score(1)

weight([0.1]) = 0

weight([0.11]) = ???

15/22

Examine weight for all samples
consistent with a branch at once.

16/22

Symbolic Execution

sampling variable

weight([s]) = 0 whenever s < 0.5

17/22

Symbolic Execution

〈if sample < 0.5 then score(0) else score(1), 1, []〉

sampling variable

weight([s]) = 0 whenever s < 0.5

17/22

Symbolic Execution

〈if sample < 0.5 then score(0) else score(1), 1, []〉

sampling variable

weight([s]) = 0 whenever s < 0.5

17/22

Symbolic Execution

→ 〈if 0.1 < 0.5 then score(0) else score(1), 1, [0.1]〉

sampling variable

weight([s]) = 0 whenever s < 0.5

17/22

Symbolic Execution

→ 〈if 0.1 < 0.5 then score(0) else score(1), 1, [0.1]〉

⇒ ⟪if α < 0.5 then score(0) else score(1), 1, (0,1)⟫

sampling variable

weight([s]) = 0 whenever s < 0.5

17/22

Symbolic Execution

→ 〈if 0.1 < 0.5 then score(0) else score(1), 1, [0.1]〉

⇒ ⟪if α < 0.5 then score(0) else score(1), 1, (0, 1)⟫

sampling variable

weight([s]) = 0 whenever s < 0.5

17/22

Symbolic Execution

→ 〈score(0), 1, [0.1]〉

⇒ ⟪score(0), 1, (0,0.5)⟫

sampling variable

weight([s]) = 0 whenever s < 0.5

17/22

Symbolic Execution

→ 〈score(0), 1, [0.1]〉

⇒ ⟪score(0), 1, (0, 0.5)⟫

sampling variable

weight([s]) = 0 whenever s < 0.5

17/22

Symbolic Execution

→ 〈0,0, [0.1]〉

⇒ ⟪0,0, (0, 0.5)⟫

sampling variable

weight([s]) = 0 whenever s < 0.5

17/22

Symbolic Execution

→ 〈0,0, [0.1]〉

⇒ ⟪0,0, (0, 0.5)⟫

sampling variable

weight([s]) = 0 whenever s < 0.5

17/22

term accumulated weight trace of samples

Configuration: 〈 M , w , s 〉

Symbolic Configuration: ⟪ M , w , U ⟫

symbolic term weight function set of traces in branch

M : symbolic term
− sampling variables α1, . . . , αn

− (delayed operations)
U ⊆ (0, 1)n

w : U → R≥0

18/22

term accumulated weight trace of samples

Configuration: 〈 M , w , s 〉

Symbolic Configuration: ⟪ M , w , U ⟫

symbolic term weight function set of traces in branch

M : symbolic term
− sampling variables α1, . . . , αn

− (delayed operations)
U ⊆ (0, 1)n

w : U → R≥0

18/22

term accumulated weight trace of samples

Configuration: 〈 M , w , s 〉

Symbolic Configuration: ⟪ M , w , U ⟫

symbolic term

weight function set of traces in branch

M : symbolic term
− sampling variables α1, . . . , αn

− (delayed operations)

U ⊆ (0, 1)n

w : U → R≥0

18/22

term accumulated weight trace of samples

Configuration: 〈 M , w , s 〉

Symbolic Configuration: ⟪ M , w , U ⟫

symbolic term

weight function

set of traces in branch

M : symbolic term
− sampling variables α1, . . . , αn

− (delayed operations)
U ⊆ (0, 1)n

w : U → R≥0

18/22

term accumulated weight trace of samples

Configuration: 〈 M , w , s 〉

Symbolic Configuration: ⟪ M , w , U ⟫

symbolic term weight function set of traces in branch

M : symbolic term
− sampling variables α1, . . . , αn

− (delayed operations)
U ⊆ (0, 1)n

w : U → R≥0

18/22

Define Symbolic Execution to Closely Mirror
Operational Semantics

Densities of A.S. Terminating Programs are Di↵erentiable A.E.
21

Now, we introduce the following rules for symbolic redex contractions:

�(�y. M) V , w , U�) �M [V /y], w , U��f(V1, . . . , V`), w , U�) � f (V1, . . . , V`), w , dom
��f (V1, . . . , V`)

��\ U �
�Y(�y. M), w , U�) ��z. M [Y(�y. M)/y] z, w , U�

�if �V  0, M , N
�
, w , U�) �M , w , kV k�1

(�1, 0] \ U �
�if �V  0, M , N

�
, w , U�) �N , w , kV k�1

(0,1) \ U �
�sample, w , U�) � ↵n+1 , w 0, U 0�

(U ✓ Rm ⇥ Sn)

�score(V), w , U�) �V , kV k · w , kV k�1
[0,1) \ U �

In the rule for sample, U 0 := {(r, s++[s0]) | (r, s) 2 U ^s0 2 (0, 1)} and w 0(r, s++

[s0]) := w(r, s); in the rule for score(V), (kV k · w)(r, s) := kV k (r, s) · w(r, s).

The rules are designed to closely mirror their concrete counterparts. Cru-

cially, the rule for sample introduces a “fresh” sampling variable, and the two

rules for conditionals split the last component U ✓ Rm⇥Sn according to whether

kV k (r, s)  0 or kV k (r, s) > 0. The “delay” contraction (second rule) is intro-

duced for a technical reason: ultimately, to enable item 1 (Soundness). Otherwise

it is, for example, unclear whether �y. ↵1 +1 should correspond to �y. 0.5+1 or

�y. 1.5 for s1 = 0.5.Finally we lift this to arbitrary symbolic terms using the obvious rule for

symbolic evaluation contexts:

�R , w , U�) �R 0, w 0, U 0��E [R], w , U�) �E [R 0], w 0, U 0�
Note that we do not need rules corresponding to reductions to fail because

the third component of the symbolic configurations “filters out” the pairs (r, s)

corresponding to undefined behaviour. In particular, the following holds:

Lemma 6. Suppose �M , w , U� is a symbolic configuration and �M , w , U�)

�N , w 0, U 0�. Then �N , w 0, U 0� is a symbolic configuration.

A key advantage of the symbolic execution is that the induced computation

tree is finitely branching, since branching only arises from conditionals, splitting

the trace space into disjoint subsets. This contrasts with the concrete situation

(from Sec. 3), in which sampling creates uncountably many branches.

Lemma 7 (Basic Properties). Let �M , w , U� be a symbolic configuration.

Then

1. There are at most countably distinct such U 0 that �M , w , U�)⇤ �N , w 0, U 0�.

2. If �M , w , U�)⇤ �Vi, wi, Ui� for i 2 {1, 2} then U1 = U2 or U1 \ U2 = ;.

3. If �M , w , U�)⇤ �Ei[sample], wi, Ui� for i 2 {1, 2} then U1 = U2 or U1 \

U2 = ;.

19/22

Define Symbolic Execution to Closely Mirror
Operational Semantics

Densities of A.S. Terminating Programs are Di↵erentiable A.E.
21

Now, we introduce the following rules for symbolic redex contractions:

�(�y. M) V , w , U�) �M [V /y], w , U��f(V1, . . . , V`), w , U�) � f (V1, . . . , V`), w , dom
��f (V1, . . . , V`)

��\ U �
�Y(�y. M), w , U�) ��z. M [Y(�y. M)/y] z, w , U�

�if �V  0, M , N
�
, w , U�) �M , w , kV k�1

(�1, 0] \ U �
�if �V  0, M , N

�
, w , U�) �N , w , kV k�1

(0,1) \ U �
�sample, w , U�) � ↵n+1 , w 0, U 0�

(U ✓ Rm ⇥ Sn)

�score(V), w , U�) �V , kV k · w , kV k�1
[0,1) \ U �

In the rule for sample, U 0 := {(r, s++[s0]) | (r, s) 2 U ^s0 2 (0, 1)} and w 0(r, s++

[s0]) := w(r, s); in the rule for score(V), (kV k · w)(r, s) := kV k (r, s) · w(r, s).

The rules are designed to closely mirror their concrete counterparts. Cru-

cially, the rule for sample introduces a “fresh” sampling variable, and the two

rules for conditionals split the last component U ✓ Rm⇥Sn according to whether

kV k (r, s)  0 or kV k (r, s) > 0. The “delay” contraction (second rule) is intro-

duced for a technical reason: ultimately, to enable item 1 (Soundness). Otherwise

it is, for example, unclear whether �y. ↵1 +1 should correspond to �y. 0.5+1 or

�y. 1.5 for s1 = 0.5.Finally we lift this to arbitrary symbolic terms using the obvious rule for

symbolic evaluation contexts:

�R , w , U�) �R 0, w 0, U 0��E [R], w , U�) �E [R 0], w 0, U 0�
Note that we do not need rules corresponding to reductions to fail because

the third component of the symbolic configurations “filters out” the pairs (r, s)

corresponding to undefined behaviour. In particular, the following holds:

Lemma 6. Suppose �M , w , U� is a symbolic configuration and �M , w , U�)

�N , w 0, U 0�. Then �N , w 0, U 0� is a symbolic configuration.

A key advantage of the symbolic execution is that the induced computation

tree is finitely branching, since branching only arises from conditionals, splitting

the trace space into disjoint subsets. This contrasts with the concrete situation

(from Sec. 3), in which sampling creates uncountably many branches.

Lemma 7 (Basic Properties). Let �M , w , U� be a symbolic configuration.

Then

1. There are at most countably distinct such U 0 that �M , w , U�)⇤ �N , w 0, U 0�.

2. If �M , w , U�)⇤ �Vi, wi, Ui� for i 2 {1, 2} then U1 = U2 or U1 \ U2 = ;.

3. If �M , w , U�)⇤ �Ei[sample], wi, Ui� for i 2 {1, 2} then U1 = U2 or U1 \

U2 = ;.

19/22

(Soundness) If ⟪M, 1, []⟫⇒∗ ⟪ V ,w ,U⟫

then

symbolic value
w|U = weight|U

(Completeness) If M terminates on s then ⟪M, 1, []⟫⇒∗ ⟪V ,w ,U⟫ s.t. s ∈ U.

(Invariance) If ⟪M, 1, []⟫⇒∗ ⟪ N ,w ,U⟫

then

w is differentiable
boundary of U has measure 0

assumptions on primitives

Theorem

The weight-function is differentiable for almost all terminating traces.

20/22

(Soundness) If ⟪M, 1, []⟫⇒∗ ⟪ V ,w ,U⟫

then

symbolic value

w|U = weight|U

(Completeness) If M terminates on s then ⟪M, 1, []⟫⇒∗ ⟪V ,w ,U⟫ s.t. s ∈ U.

(Invariance) If ⟪M, 1, []⟫⇒∗ ⟪ N ,w ,U⟫

then

w is differentiable
boundary of U has measure 0

assumptions on primitives

Theorem

The weight-function is differentiable for almost all terminating traces.

20/22

(Soundness) If ⟪M, 1, []⟫⇒∗ ⟪ V ,w ,U⟫ then
symbolic value

w|U = weight|U

(Completeness) If M terminates on s then ⟪M, 1, []⟫⇒∗ ⟪V ,w ,U⟫ s.t. s ∈ U.

(Invariance) If ⟪M, 1, []⟫⇒∗ ⟪ N ,w ,U⟫ then

w is differentiable
boundary of U has measure 0

assumptions on primitives

Theorem

The weight-function is differentiable for almost all terminating traces.

20/22

(Soundness) If ⟪M, 1, []⟫⇒∗ ⟪ V ,w ,U⟫ then
symbolic value

w|U = weight|U

(Completeness) If M terminates on s

then ⟪M, 1, []⟫⇒∗ ⟪V ,w ,U⟫ s.t. s ∈ U.

(Invariance) If ⟪M, 1, []⟫⇒∗ ⟪ N ,w ,U⟫ then

w is differentiable
boundary of U has measure 0

assumptions on primitives

Theorem

The weight-function is differentiable for almost all terminating traces.

20/22

(Soundness) If ⟪M, 1, []⟫⇒∗ ⟪ V ,w ,U⟫ then
symbolic value

w|U = weight|U

(Completeness) If M terminates on s then ⟪M, 1, []⟫⇒∗ ⟪V ,w ,U⟫ s.t. s ∈ U.

(Invariance) If ⟪M, 1, []⟫⇒∗ ⟪ N ,w ,U⟫ then

w is differentiable
boundary of U has measure 0

assumptions on primitives

Theorem

The weight-function is differentiable for almost all terminating traces.

20/22

(Soundness) If ⟪M, 1, []⟫⇒∗ ⟪ V ,w ,U⟫ then
symbolic value

w|U = weight|U

(Completeness) If M terminates on s then ⟪M, 1, []⟫⇒∗ ⟪V ,w ,U⟫ s.t. s ∈ U.

(Invariance) If ⟪M, 1, []⟫⇒∗ ⟪ N ,w ,U⟫

then

w is differentiable
boundary of U has measure 0

assumptions on primitives

Theorem

The weight-function is differentiable for almost all terminating traces.

20/22

(Soundness) If ⟪M, 1, []⟫⇒∗ ⟪ V ,w ,U⟫ then
symbolic value

w|U = weight|U

(Completeness) If M terminates on s then ⟪M, 1, []⟫⇒∗ ⟪V ,w ,U⟫ s.t. s ∈ U.

(Invariance) If ⟪M, 1, []⟫⇒∗ ⟪ N ,w ,U⟫ then

w is differentiable
boundary of U has measure 0

assumptions on primitives

Theorem

The weight-function is differentiable for almost all terminating traces.

20/22

(Soundness) If ⟪M, 1, []⟫⇒∗ ⟪ V ,w ,U⟫ then
symbolic value

w|U = weight|U

(Completeness) If M terminates on s then ⟪M, 1, []⟫⇒∗ ⟪V ,w ,U⟫ s.t. s ∈ U.

(Invariance) If ⟪M, 1, []⟫⇒∗ ⟪ N ,w ,U⟫ then

w is differentiable
boundary of U has measure 0

assumptions on primitives

Theorem

The weight-function is differentiable for almost all terminating traces.

20/22

Conclusion

This talk:
conditions on primitive operations
symbolic execution as a proof technique

differentiability of weight-function on almost all terminating traces

Also in the paper:
extension to almost all traces assuming almost-sure termination
value-function

Future directions:
applications in inference algorithms

21/22

Conclusion

This talk:
conditions on primitive operations
symbolic execution as a proof technique
differentiability of weight-function on almost all terminating traces

Also in the paper:
extension to almost all traces assuming almost-sure termination
value-function

Future directions:
applications in inference algorithms

21/22

Conclusion

This talk:
conditions on primitive operations
symbolic execution as a proof technique
differentiability of weight-function on almost all terminating traces

Also in the paper:
extension to almost all traces assuming almost-sure termination
value-function

Future directions:
applications in inference algorithms

21/22

Conclusion

This talk:
conditions on primitive operations
symbolic execution as a proof technique
differentiability of weight-function on almost all terminating traces

Also in the paper:
extension to almost all traces assuming almost-sure termination
value-function

Future directions:
applications in inference algorithms

21/22

Conclusion

Densities of almost surely terminating probabilistic
programs are differentiable almost everywhere

Carol Mak Luke Ong Hugo Paquet

Dominik Wagner

dominik.wagner@cs.ox.ac.uk

22/22

mailto:dominik.wagner@cs.ox.ac.uk

backup slides

22/22

	Introduction
	

	Operational Semantics
	

	Failure of Differentiability
	

	Symbolic Execution
	

	Conclusion
	

	Appendix
	Backup

