# A Language and Smoothed Semantics for Convergent Stochastic Gradient Descent

Dominik Wagner Luke Ong



LAFI 2022



**Example:** maximisation of ELBO for reparametrised models in *variational inference* 

$$\mathrm{ELBO}(\boldsymbol{\theta}) := \mathbb{E}_{\mathsf{z} \sim q} \left[ \log p(\boldsymbol{\phi}_{\boldsymbol{\theta}}(\mathsf{z})) - \log q_{\boldsymbol{\theta}}(\boldsymbol{\phi}_{\boldsymbol{\theta}}(\mathsf{z})) \right]$$



**Aim:** find *stationary* point, i.e.  $\theta$  s.t.  $\nabla_{\theta} \mathbb{E}_{\mathbf{z} \sim q}[f(\theta, \mathbf{z})] = 0$ 

#### Stochastic Gradient Descent (SGD)

$$m{ heta_{k+1}} = m{ heta_k} - lpha_k \cdot \underbrace{
abla_{m{ heta}} f(m{ heta_k}, \mathbf{z}_k)}_{reprametrisation\ gradient\ estimator} \mathbf{z}_k \sim q$$

# Reparametrisation gradient estimator for non-differentiable models is biased!

[Lee et al., NeurIPS 2018]

$$f(\theta, z) = -0.5 \cdot \theta^2 + \begin{cases} 0 & \text{if } z + \theta < 0 \\ 1 & \text{otherwise} \end{cases}$$

$$\mathbb{E}_{\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{1})} \left[ \nabla_{\theta} \, \mathsf{f}(\theta, \mathbf{z}) \right] = -\theta \neq -\theta + \mathcal{N}(-\theta \mid \mathbf{0}, \mathbf{1}) = \nabla_{\theta} \, \mathbb{E}_{z \sim \mathcal{N}(\mathbf{0}, \mathbf{1})} \left[ f(\theta, z) \right]$$



Vanishing gradient estimator does not imply stationarity!

#### **Contributions**

Provable convergence to stationary points (and unbiased gradient estimators) for typable programs.

#### Approach:

- ► Smoothen (discontinuous) function using sigmoid with accuracy coefficient
- Optimise expectation, enhancing accuracy in each step

#### This talk:

- Reparametrisation programming language
- Type system and smoothed semantics
- Convergence of Diagonalisation Stochastic Gradient Descent, a new variant of SGD

## Reparametrisation Programming Language

simply typed  $\lambda$ -calculus with  $\mathbb{R}$ , +,  $\cdot$  and *conditionals* 

+ sampling from standard normal transformed by diffeomorphic polynomials

$$M ::= \cdots$$
 $| \text{ if } M < 0 \text{ then } M \text{ else } M$ 
 $| \phi_{\theta}(M, \dots, M, \text{sample})$ 
 $| diffeomorphic polynomial | diffeomorphic polynomial |$ 

**Example:** sample from  $\mathcal{N}(\mu, \sigma)$  using  $\phi_{\mu, \sigma}(\mathsf{sample})$ , where  $\phi_{\mu, \sigma}(z) := \sigma \cdot z + \mu$ 

$$\operatorname{argmin}_{\boldsymbol{\theta}} \mathbb{E}_{\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[ \mathbf{f}_{\mathsf{M}}(\boldsymbol{\theta}, \mathbf{z}) \right]$$

 $\mathop{\rm argmin}_{\theta} \mathbb{E}_{\mathbf{z} \sim \mathcal{N}(\mathbf{0},\mathbf{I})} \left[ \mathbf{f_M}(\theta,\mathbf{z}) \right]$  where  $f_M$  is the *value*-function of a term M:R with parameters  $\theta:R$ .

(Integrability)  $\mathbb{E}_{\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})}[|f_M(\theta, \mathbf{z})|] < \infty$  for all  $\theta \in \mathbb{R}^n$ .

### Type System

ensure guards do not directly depend on parameters (only after transformation)

$$\begin{aligned} &\text{if } \theta < 0 \text{ then } 0 \text{ else } 1 \quad \text{\r{X}} \\ &(\lambda x. \text{ if } x < 0 \text{ then } 0 \text{ else } 1) \, \theta \quad \text{\r{X}} \\ &(\lambda x. \text{ if } x < 0 \text{ then } 0 \text{ else } 1) \, (\underline{\phi}_{\theta}(\text{sample})) \quad \checkmark \\ &(\lambda x. \, \underline{-0.5} \cdot \theta^2 + (\text{if } x < 0 \text{ then } \underline{0} \text{ else } \underline{1})) \, (\underline{\phi}_{\theta}(\text{sample})) \quad \checkmark \end{aligned}$$

#### Reparametrisation-aware symbolic execution

variant of [Mak et al., ESOP 2021]

- Collect constraints due to branching
- ▶ Replace  $\underline{\phi}_{\theta}(P_1, \dots, P_{\ell}, \mathbf{sample})$  with fresh sampling variable  $\alpha_j$  and keep track of *transformations*

 $\emptyset \mid \emptyset \vdash_{\boldsymbol{\theta}} M : R$ 





#### "Standard" Semantics for accuracy coefficient $k \in \mathbb{N}$

$$f_{M}(\boldsymbol{\theta}, \mathbf{z}) = \sum_{M \downarrow_{\boldsymbol{\phi}}^{(\Psi_{<}, \Psi_{\geq})} P} f_{P}(\boldsymbol{\theta}, \boldsymbol{\phi}_{\boldsymbol{\theta}}(\mathbf{z})) \cdot \prod_{\psi \in \Psi_{<}} [\psi(\boldsymbol{\phi}_{\boldsymbol{\theta}}(\mathbf{z})) < 0] \cdot \prod_{\psi \in \Psi_{\geq}} [\psi(\boldsymbol{\phi}_{\boldsymbol{\theta}}(\mathbf{z})) \geq 0]$$



#### **Smoothed Semantics** for accuracy coefficient $k \in \mathbb{N}$

$$f_{M,k}(\boldsymbol{\theta}, \mathbf{z}) = \sum_{M \downarrow_{\boldsymbol{\phi}}^{(\Psi < , \Psi_{\geq})} P} f_{P}(\boldsymbol{\theta}, \boldsymbol{\phi}_{\boldsymbol{\theta}}(\mathbf{z})) \cdot \prod_{\psi \in \Psi_{<}} \frac{\sigma_{\mathbf{k}}(-\psi(\boldsymbol{\phi}_{\boldsymbol{\theta}}(\mathbf{z})))}{\psi(\boldsymbol{\phi}_{\boldsymbol{\theta}}(\mathbf{z}))} \cdot \prod_{\psi \in \Psi_{\geq}} \frac{\sigma_{\mathbf{k}}(\psi(\boldsymbol{\phi}_{\boldsymbol{\theta}}(\mathbf{z})))}{\psi(\boldsymbol{\phi}_{\boldsymbol{\theta}}(\mathbf{z}))}$$

Adapt (backward mode) automatic differentiation to compute smoothing

(Unbiasedness) 
$$\nabla_{\mathbf{z}} \mathbb{E}_{\mathbf{z}}[f_{M,k}(\boldsymbol{\theta}, \mathbf{z})] = \mathbb{E}_{\mathbf{z}}[\nabla_{\mathbf{z}} f_{M,k}(\boldsymbol{\theta}, \mathbf{z})]$$
 for all  $k \in \mathbb{N}$ .

Use SGD for  $f_{M,k}$  for fixed  $k \in \mathbb{N}$ 

(Uniform Convergence of Gradients) If  $\Theta \subseteq \mathbb{R}^n$  is compact then

$$\nabla_{\mathbf{z}} \, \mathbb{E}_{\mathbf{z}}[\mathbf{f}_{\mathsf{M},\mathsf{k}}(\boldsymbol{\theta},\mathsf{z})] \xrightarrow{\mathrm{unif}} \nabla_{\mathbf{z}} \, \mathbb{E}_{\mathbf{z}}[\mathbf{f}_{\mathsf{M}}(\boldsymbol{\theta},\mathsf{z})] \qquad \text{as } k \to \infty \text{ for } \boldsymbol{\theta} \in \boldsymbol{\Theta}$$

Key trick:

$$\frac{\partial(\sigma_k \circ \psi \circ \phi_{\cdot})}{\partial \theta_i}(\theta, \mathsf{z}) = \nabla_{\mathsf{z}}(\sigma_k \circ \psi \circ \phi_{\cdot})(\theta, \mathsf{z}) \cdot \mathsf{J}_{\mathsf{z}}^{-1}\phi_{\theta}(\mathsf{z}) \cdot \mathsf{J}_{\theta_i}\phi_{\theta}(\mathsf{z})$$

(enables integration by parts of  $\mathbb{E}_{\mathbf{z}}[\frac{\partial f_{M,k}}{\partial \theta_i}]$ )

#### Diagonalisation Stochastic Gradient Descent (DSGD)

$$\theta_{k+1} = \theta_k - \alpha_k \cdot \nabla_{\theta} f_{M,k}(\theta_k, z_k)$$
  $z_k \sim \mathcal{N}(0, I)$ 

As a consequence of unbiasedness, uniform convergence (of gradients), etc.

#### Convergence on Typable Programs

If  $\emptyset \mid \emptyset \vdash_{\boldsymbol{\theta}} M : R$  then a DSGD sequence  $(\boldsymbol{\theta}_k)_{k \in \mathbb{N}}$ 

- 1. is unbounded or
- 2. has a stationary accumulation point.

#### Related Work

#### [Lee et al., NeurIPS 2018]:

- Fix (biased) reparametrisation gradient estimator for non-differentiable models by additional non-trivial *boundary* terms
- X Only discuss efficient method for affine guards
- X Not concerned with *convergence* of SGD
- X No discussion of PL aspects

#### Conclusion

#### This work:

- ✓ Type system enforcing very mild restrictions on PL
- ✓ Smoothed semantics avoids boundary term
- ✓ Not only unbiasedness but also convergence of DSGD
- Asymptotic result, for each fixed accuracy smoothing (only) approximation

#### Ongoing and future work:

- Experimental evaluation
- Recursion, beyond polynomials

#### Conclusion

Provable convergence to stationary points (and unbiased gradient estimators) for typable programs.

Dominik Wagner Luke Ong

dominik.wagner@cs.ox.ac.uk

