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Variational Inference:

frame posterior inference as (deterministic) optimisation problem

Posit: variational family of “simpler” guide distributions

Aim: find guide is “closest” to (true) posterior
KL divergence
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argmaxθ Ez∼qθ [f (θ, z)]

expressed in PL with conditionals,
may not be differentiable/continuous

use Stochastic Gradient Descent

Key ingredient: estimation of gradient of expectation

Score Estimator:
widely applicable but high variance

Reparametrisation Estimator:
better in practice but may be biased! [Lee et al., NeurIPS 2018]
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Example: Temperature Regulation

l e t t0 = sample normal (20 ,1 )

mu = t0 + i f t0 >= 19 then 0

e l s e 2 ∗ (19− t0 )

observe 21 from normal (mu, 1)

in t0

17 18 19 20 21 22 23 24

5 · 10−2

0.1

0.15

t0
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Is the Reparametrisation Gradient Estimator biased
for continuous but possibly non-differentiable programs?

No!
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simply typed λ-calculus with R and primitive operations
+ sample + observe

+ branching + smoothed branching
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Denotational Weight Semantics

denotational version of weight/density semantics

beyond measuarability: capture piecewise definition and continuity
complication: smoothed conditionals at higher-order [ESOP23]

Generalise construction of Frölicher spaces

Unbiasedness for terms without conditionals

Example. Rephrase conditional via non-differentiable primitive:

c · (ReLU (19− t0))
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Continuity for Terms with Branching

naive check intractable!

For analytic primitives f and g ,

if x − y < 0 then f x y else g x y is continuous

⇐⇒ (f − g)|U = 0 where U := {(x , y) | x = y}
⇐⇒* f (x , y) = g(x , y) (x , y) ∼ U

* with probability 1

Restrict guards to affine terms:

efficiently sample from boundary
efficiently check guard’s consistency (linear arithmetic solvers)
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Contributions

The Reparametrisation Gradient Estimator is unbiased for
continuous but possibly non-differentiable programs

I categorical models
I prove unbiasedness in continuous setting
I establish continuity in languages with conditionals compositionally

− for affine guards: efficient randomised check employing linear arithmetic solvers

Foundation for fast yet correct (variational) inference
for probabilistic programming
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