A Language and Smoothed Semantics for Convergent Stochastic Gradient Descent

Dominik Wagner Basim Khajwal Luke Ong

Logic of Probabilistic Programming 31 January 2022

Example: maximisation of ELBO for reparametrised models in variational inference

$$\mathrm{ELBO}(m{ heta}) \coloneqq \mathbb{E}_{\mathbf{z} \sim q} \left[\log p(m{\phi_{m{ heta}}}(\mathbf{z})) - \log q_{m{ heta}}(m{\phi_{m{ heta}}}(\mathbf{z}))
ight]$$
model guide

Benefit of reparametrisation: lower variance

Aim: find *stationary* point, i.e. θ s.t. $\nabla_{\theta} \mathbb{E}_{\mathbf{z} \sim q}[f(\theta, \mathbf{z})] = 0$

Stochastic Gradient Descent (SGD)

$$m{ heta_{k+1}} = m{ heta_k} - lpha_k \cdot \underbrace{
abla_{m{ heta}} f(m{ heta_k}, \mathbf{z}_k)}_{reprametrisation\ gradient\ estimator} \mathbf{z}_k \sim q$$

Reparametrisation gradient estimator for non-differentiable models is biased!

[Lee et al., NeurlPS 2018]

$$f(\theta, z) = -0.5 \cdot \theta^2 + \begin{cases} 0 & \text{if } z + \theta < 0 \\ 1 & \text{otherwise} \end{cases}$$

$$\mathbb{E}_{\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{1})} \left[\nabla_{\theta} \, \mathsf{f}(\theta, \mathbf{z}) \right] = -\theta \neq -\theta + \mathcal{N}(-\theta \mid \mathbf{0}, \mathbf{1}) = \nabla_{\theta} \, \mathbb{E}_{z \sim \mathcal{N}(\mathbf{0}, \mathbf{1})} \left[f(\theta, z) \right]$$

Vanishing gradient estimator does not imply stationarity!

Contributions

Provable convergence to stationary points (and unbiased gradient estimators) for typable programs.

Approach:

- Smoothen (discontinuous) function using sigmoid with accuracy coefficient
- Optimise expectation, enhancing accuracy in each step

This talk:

- Reparametrisation programming language
- Type system and smoothed semantics
- Convergence of Diagonalisation Stochastic Gradient Descent, a new variant of SGD
- Empirical evaluation

System and Smoothed Semantics

Part I

Programming Language, Type

Reparametrisation Programming Language

simply typed λ -calculus with \mathbb{R} , +, \cdot and *conditionals*

+ sampling from standard normal transformed by diffeomorphic polynomials

$$M ::= \cdots$$
| if $M < 0$ then M else M
| $\phi_{\theta}(M, \dots, M, \text{sample})$
| diffeomorphic polynomial

Example: sample from $\mathcal{N}(\mu, \sigma)$ using $\phi_{\mu, \sigma}(\mathsf{sample})$, where $\phi_{\mu, \sigma}(z) := \sigma \cdot z + \mu$

$$\operatorname{argmin}_{\boldsymbol{\theta}} \mathbb{E}_{\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[\llbracket \mathbf{M} \rrbracket (\boldsymbol{\theta}, \mathbf{z}) \right]$$

where $[\![M]\!]$ is the *value*-function of a term M:R with parameters $\theta:R$.

(Integrability) $\mathbb{E}_{\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})}[| [M] (\theta, \mathbf{z})|] < \infty$ for all $\theta \in \mathbb{R}^n$.

Type System

ensure guards do not directly depend on parameters (only after transformation)

$$\begin{split} &\text{if } \theta < 0 \, \text{then} \, 0 \, \text{else} \, 1 \quad \bigstar \\ &(\lambda x. \, \text{if} \, x < 0 \, \text{then} \, 0 \, \text{else} \, 1) \, \theta \quad \bigstar \\ &(\lambda x. \, \text{if} \, x < 0 \, \text{then} \, 0 \, \text{else} \, 1) \, (\underline{\phi}_{\theta}(\text{sample})) \quad \checkmark \\ &(\lambda x. \, \underline{-0.5} \cdot \theta^2 + (\text{if} \, x < 0 \, \text{then} \, \underline{0} \, \text{else} \, \underline{1})) \, (\phi_{\theta}(\text{sample})) \quad \checkmark \end{split}$$

Two kinds of typing judgements:

$$\frac{\Gamma \vdash L : R \quad \Gamma \mid \Delta \vdash_{\boldsymbol{\theta}} M : \tau \quad \Gamma \mid \Delta \vdash_{\boldsymbol{\theta}} N : \tau}{\Gamma \mid \Delta \vdash_{\boldsymbol{\theta}} \text{if } L < 0 \text{ then } M \text{ else } N : \tau}$$

Reparametrisation-aware symbolic execution

variant of [Mak et al., ESOP 2021]

- Collect constraints due to branching
- ▶ Replace $\phi_{\theta}(P_1, ..., P_{\ell}, \text{sample})$ with fresh sampling variable α_j and keep track of *transformations*

 $\emptyset \mid \emptyset \vdash_{\boldsymbol{\theta}} M : R$

"Standard" Semantics for accuracy coefficient $k \in \mathbb{N}$

$$\llbracket M \rrbracket \left(\boldsymbol{\theta}, \mathbf{z} \right) = \sum_{M \Downarrow_{\boldsymbol{\phi}}^{(\Psi_{<}, \Psi_{\geq})} P} \llbracket P \rrbracket \left(\boldsymbol{\theta}, \boldsymbol{\phi}_{\boldsymbol{\theta}}(\mathbf{z}) \right) \cdot \prod_{\psi \in \Psi_{<}} [\psi(\boldsymbol{\phi}_{\boldsymbol{\theta}}(\mathbf{z})) < 0] \cdot \prod_{\psi \in \Psi_{\geq}} [\psi(\boldsymbol{\phi}_{\boldsymbol{\theta}}(\mathbf{z})) \geq 0]$$

Smoothed Semantics for accuracy coefficient $k \in \mathbb{N}$

$$\llbracket M \rrbracket_k \left(\boldsymbol{\theta}, \mathbf{z} \right) = \sum_{M \Downarrow_{\boldsymbol{\phi}}^{\left(\Psi < , \Psi \geq \right)} P} \llbracket P \rrbracket \left(\boldsymbol{\theta}, \phi_{\boldsymbol{\theta}}(\mathbf{z}) \right) \cdot \prod_{\psi \in \Psi_{<}} \sigma_{\mathbf{k}} \left(- \psi(\phi_{\boldsymbol{\theta}}(\mathbf{z})) \right) \cdot \prod_{\psi \in \Psi_{\geq}} \sigma_{\mathbf{k}} (\psi(\phi_{\boldsymbol{\theta}}(\mathbf{z})))$$

Adapt (backward mode) automatic differentiation to compute smoothing

Part II:

Properties of Smoothing

(Unbiasedness)
$$\nabla_{\theta} \mathbb{E}_{\mathbf{z}}[\llbracket M \rrbracket_k(\theta, \mathbf{z})] = \mathbb{E}_{\mathbf{z}}[\nabla_{\theta} \llbracket M \rrbracket_k(\theta, \mathbf{z})] \text{ for all } k \in \mathbb{N}.$$

Use SGD for $[M]_k$ for fixed $k \in \mathbb{N}$

Are stationary points of $\mathbb{E}[\llbracket M \rrbracket_k(\theta, z)]$ approximately stationary for $\mathbb{E}[\llbracket M \rrbracket(\theta, z)]$?

$$[\![M]\!]_{k} \to [\![M]\!]$$
 pointwisely as $k \to \infty$ (not uniformly!)

However, set of approximate roots of polynomials is "small".

(Uniform Convergence) If $\Theta \subseteq \mathbb{R}^n$ is compact then

$$\mathbb{E}_{\mathsf{z}}[\llbracket \mathsf{M} \rrbracket_{\mathsf{k}}(\theta, \mathsf{z})] \xrightarrow{\mathrm{unif}} \mathbb{E}_{\mathsf{z}}[\llbracket \mathsf{M} \rrbracket(\theta, \mathsf{z})]$$

as
$$k o \infty$$
 for $oldsymbol{ heta} \in oldsymbol{\Theta}$

$$\phi_{\theta}(z) := c \cdot z + \theta$$
, where $0 \neq c \in \mathbb{R}$

$$M \equiv \text{if } \phi_{\theta}(\text{sample}) < 0 \text{ then } \underline{0} \text{ else } \underline{1}$$

$$\llbracket M \rrbracket_k (\theta, z) = \sigma_k (\phi_{\theta}(z))$$

Apply the chain rule:

$$\nabla_{\theta} \llbracket M \rrbracket_{k} (\theta, z) = \sigma'_{k} (\phi_{\theta}(\mathbf{z}))$$

$$\nabla_{\theta} \|M\|_{k}(\theta, z)$$
 is *unbounded* whenever $\phi_{\theta}(z) = 0!$

$$\phi_{\theta}(z) := c \cdot z + \theta$$
, where $0 \neq c \in \mathbb{R}$

$$M \equiv \text{if } \phi_a(\text{sample}) < 0 \text{ then } \underline{0} \text{ else } \underline{1}$$

$$\llbracket M \rrbracket_k (\theta, z) = \sigma_k (\phi_{\theta}(z))$$

Apply the chain rule:

$$\nabla_{\theta} \llbracket M \rrbracket_{k} (\theta, z) = \sigma'_{k} (\phi_{\theta}(\mathbf{z})) = \frac{1}{c} \cdot \nabla_{z} (\sigma_{k} \circ \phi_{(-)}) (\theta, z)$$

Enables integration by part:

$$\mathbb{E}_{z} \left[\nabla_{\theta} \left[M \right]_{k} (\theta, z) \right] = \int \mathcal{N}(z) \cdot \frac{1}{c} \cdot \nabla_{\mathbf{z}} (\sigma_{k} \circ \phi_{(-)}) (\theta, z) \, \mathrm{d}z$$

$$= \frac{1}{c} \left(\underbrace{\left[\mathcal{N}(z) \cdot \sigma_{k} (\phi_{\theta}(z)) \right]_{-\infty}^{\infty}}_{0} + \underbrace{\mathbb{E}_{z} \left[z \cdot \sigma_{k} (\phi_{\theta}(z)) \right]}_{\underset{\text{unif}}{\underline{\text{unif}}}} \mathbb{E}[z \cdot [\phi_{\theta}(z) > 0]] \right)$$

(Uniform Convergence of Gradients) If $\Theta \subseteq \mathbb{R}^n$ is compact then

$$\nabla_{\mathbf{z}} \mathbb{E}_{\mathbf{z}}[\llbracket \mathbf{M} \rrbracket_{\mathbf{k}}(\boldsymbol{\theta}, \mathbf{z})] \xrightarrow{\mathrm{unif}} \nabla_{\mathbf{z}} \mathbb{E}_{\mathbf{z}}[\llbracket \mathbf{M} \rrbracket(\boldsymbol{\theta}, \mathbf{z})]$$
 as $k \to \infty$ for $\boldsymbol{\theta} \in \boldsymbol{\Theta}$

Basis for finding approximately stationary points:

For $\epsilon > 0$ exists $k \in \mathbb{N}$ s.t. stationary points $\boldsymbol{\theta}^* \in \boldsymbol{\Theta}$ of the k-smoothed problem satisfy

$$\|
abla_{m{ heta}}\mathbb{E}_{\mathbf{z}\sim\mathcal{N}(\mathbf{0},\mathbf{I})}[\llbracket\mathbf{M}
rbracket(m{ heta}^*,\mathbf{z})]\|<\epsilon$$

Part III:

Diagonalisation Stochastic

Gradient Descent

Diagonalisation Stochastic Gradient Descent (DSGD)

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \alpha_k \cdot \nabla_{\boldsymbol{\theta}} \left[\!\left[\boldsymbol{\mathsf{M}}\right]\!\right]_{\mathbf{k}} (\boldsymbol{\theta}_k, \mathbf{z}_k) \qquad \qquad \mathbf{z}_k \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

As a consequence of unbiasedness, uniform convergence (of gradients), etc.

Convergence on Typable Programs

- If $\emptyset \mid \emptyset \vdash_{\boldsymbol{\theta}} M : R$ then a DSGD sequence $(\boldsymbol{\theta}_k)_{k \in \mathbb{N}}$
 - 1. is unbounded or
 - 2. has a stationary accumulation point.

Part IV: **Evaluation**

Related Work

[Lee et al., NeurIPS 2018]:

- Fix (biased) reparametrisation gradient estimator for non-differentiable models by additional non-trivial *boundary* terms
- Only discuss efficient method for affine guards
- X Not concerned with *convergence* of SGD
- No discussion of PL aspects

Our work:

- ✓ Type system enforcing very mild restrictions on PL
- ✓ Simple: smoothed semantics avoids boundary term
- ✓ Not only unbiasedness but also convergence of DSGD
- Asymptotic result, for each fixed accuracy smoothing (only) approximation

Experimental Evaluation: temperature

Experimental Evaluation: textmsg

Experimental Evaluation: influenza

Computational Cost and Variance: influenza

Conclusion

Provable convergence of Diagonalisation Stochastic Gradient Descent

- Smoothed Semantics
- Type system enforcing very mild restrictions on PL
- Unbiased gradient estimators
- Competitive on benchmarks

Future work:

- Beyond normal distributions and polynomials
- Recursion

$$au:=R\mid au o au\mid au_{m{ heta}} o au$$
 may depend on parameters

$$\frac{\Gamma, y : \sigma \mid \Delta \vdash_{\theta} M : \tau}{\Gamma \mid \Delta \vdash_{\theta} \lambda y. M : \sigma \to \tau} \qquad \frac{\Gamma \mid \Delta, y : \sigma \vdash_{\theta} M : \tau}{\Gamma \mid \Delta \vdash_{\theta} \lambda y. M : \sigma_{\theta} \to \tau}$$

$$\frac{\Gamma \mid \Delta \vdash_{\theta} M : \sigma_{\theta} \rightarrow \tau \quad \Gamma \mid \Delta \vdash_{\theta} M' : \sigma}{\Gamma \mid \Delta \vdash_{\theta} M M' : \tau} \qquad \frac{\Gamma \mid \Delta \vdash_{\theta} M : \sigma \rightarrow \tau \quad \Gamma \vdash M' : \sigma}{\Gamma \mid \Delta \vdash_{\theta} M M' : \tau}$$

