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argming E,., [f(0, Z)]
Al

expressed in PL with conditionals,
no dependence on 6 may not be differentiable/continuous

Example: maximisation of ELBO for reparametrised models in variational inference

ELBO(8) = E,q [log p(¢4(2)) — log go(de(2))]

model guide

Benefit of reparametrisation: lower variance
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argming E,., [f(0, Z)]
Al

expressed in PL with conditionals,
no dependence on 6 may not be differentiable/continuous

Aim: find stationary point, i.e. 0 s.t. Vg E,4[f(0,2)] =0

Stochastic Gradient Descent (SGD)

01 =0, —ap- Vof(Ok, zk) zk~q
————

reprametrisation gradient estimator
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Reparametrisation gradient estimator
for non-differentiable models is biased!

[Lee et al., NeurlPS 2018]
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0 if 0 <0
£(8,2) = —05.92 44> "0
1 otherwise

E,on01) [Vof(0,2)] = =0 # -0 + N(—010,1) = Vo E, n(0,1) [f (0, 2)]
1 .
\0.&
1 —05 05 1
—0.5

-1+t

Vanishing gradient estimator does not imply stationarity!
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Contributions

Provable convergence to stationary points (and unbiased gradient
estimators) for typable programs.

Approach:
» Smoothen (discontinuous) function using sigmoid with accuracy coefficient
» Optimise expectation, enhancing accuracy in each step

This talk:
m Reparametrisation programming language
m Type system and smoothed semantics

m Convergence of Diagonalisation Stochastic Gradient Descent, a new variant of
SGD

Empirical evaluation
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Part |-

Programming Language, Type
System and Smoothed Semantics




Reparametrisation Programming Language

simply typed A-calculus with R, +, - and conditionals

+ sampling from standard normal
transformed by diffeomorphic polynomials

| if M < 0then M else M
| QO(M,...,M,sampIe)

\/ diffeomorphic polynomial

Example: sample from N (, o) using ¢,,.-(sample), where ¢, ,(z) =0 -z+p
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argming E, 0,1 [[M](8, 2)]

where [M] is the value-function of a term M : R with parameters 0 : R.

(Integrability) E, o[l [M](0,2)] < oo for all & € R".
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Type System

ensure guards do not directly depend on parameters

(only after transformation)

if0 < OthenOelsel X
(Ax.if x < OthenOelsel) 6 X

(Ax.if x < OthenOelse1) (¢ (sample)) v

(Ax. =0.5 - 6 + (if x < OthenQelse 1)) (¢,(sample)) v
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Two kinds of typing judgements:

M-M:r M AFgM:7
/ o

no parameters 6; use unrestricted not in guards

r-L:R T|AFgM:7 T|AFgN:7T
N Akrgif L <OthenMelseN : 7
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Reparametrisation-aware symbolic execution
variant of [Mak et al., ESOP 2021]

» Collect constraints due to branching

» Replace Qg(Pl, ..., Py,sample) with fresh sampling variable a;; and

keep track of transformations

12/30



0|OFe M:R
polynomials (branching)

(Vv
M \U( < > P
diffeomorphic polynomials \

. olynomial term
(transformations) poly

“Standard” Semantics for accuracy coefficient k € N

MI6.2)= > P16, ¢0(2) [] [(¢e(2)) <0]- ] [¥(¢6(2) > 0]

(V¥ ) cv eV
My < V> PpeV PeEV>
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Smoothed Semantics for accuracy coefficient k € N

M (8,2)= > [PI(® ) T ox(=¢(de(2)) - T] ox(¥(ea(2))

M@$<W>”> PeV LSS
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Adapt (backward mode) automatic differentiation

to compute smoothing
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Part |l

Properties of Smoothing




(Unbiasedness) Vg E,[[M], (0,2)] = E,[Vg [M], (8,2)] for all k € N.

Use SGD for [M], for fixed k € N

Are stationary points of E[[M], (0,z)] approximately
stationary for E[[M](0,2)]?
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1 —05 05 1

[M], — [M] pointwisely as k — oo (not uniformly!)

However, set of approximate roots of polynomials is “small”.

(Uniform Convergence) If @ C R" is compact then

E,[[M], (6, 2)] 5 E,[[M](6, 2)] as k — oo for 8 € ©
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¢9(z) =c-z+0,where0#£ceR
M = if ¢ (sample) < OthenQelse 1

M, (0, z) = ok(de(2))

Apply the chain rule:
Vo [M] (0, 2) = oi(d(2))

w

)
j

-1 -05 05 1

Vo [M], (0, z) is unbounded whenever ¢g(z) = 0!
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¢9(z) =c-z+0,where0#£ceR

M = if ¢ (sample) < OthenQelse 1

ML, (6,2) = o4(00(2))
Apply the chain rule:
Vo M, (6,2) = o4(60(2)) = = - Valok 0 6)(0,2)

Enables integration by part:

E. [V [M], (6,2)) = [ M(2):

Ol

- Va(ok o p-y)(0,2)dz

_ % INV(2) - ok(00(2)) % + Ezlz - 0 (66(2))]

0 0 B[ (2)>0]]
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(Uniform Convergence of Gradients) If ® C R" is compact then

V, E[[M] (0, 2)] 25V, E,[[M](6, )] as k — oo for 0 € ©

Basis for finding approximately stationary points:

For € > 0 exists k € N s.t. stationary points 8" € @ of the k-smoothed problem satisfy

IVoEznon[[MI(67,2)]]| <€
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Part |l

Diagonalisation Stochastic
Gradient Descent




Diagonalisation Stochastic Gradient Descent (DSGD)

Oki1 =0k — - Vo [M], (Ok,2zk) z, ~ N(0,1)

As a consequence of unbiasedness, uniform convergence (of gradients), etc.

Convergence on Typable Programs

If0|0Fg M: R then a DSGD sequence (0x)ken
1. is unbounded or

2. has a stationary accumulation point.
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Part |V:
Evaluation



Related Work

[Lee et al., NeurlPS 2018]:
m Fix (biased) reparametrisation gradient estimator for non-differentiable models
by additional non-trivial boundary terms
X Only discuss efficient method for affine guards
X Not concerned with convergence of SGD

X No discussion of PL aspects

Our work:
v Type system enforcing very mild restrictions on PL
v Simple: smoothed semantics avoids boundary term
v Not only unbiasedness but also convergence of DSGD

m Asymptotic result, for each fixed accuracy smoothing (only) approximation
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Experimental Evaluation: temperature
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Experimental Evaluation: textmsg
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Experimental Evaluation: infiuenza
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Computational Cost and Variance: infiuenza

il I

Reparam LYY18 Smooth

BEcost BBvariance
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Conclusion

Provable convergence of Diagonalisation Stochastic Gradient Descent

Smoothed Semantics
Type system enforcing very mild restrictions on PL

Unbiased gradient estimators

Competitive on benchmarks

Future work:
m Beyond normal distributions and polynomials

m Recursion
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To=R|T—>7|T9g > T
\

may depend on parameters

Ny:o|AFgM:7 MNAy:obgM:T
MNAFg Ay M:o—r FNAFg Ay M:og— 7

FrNAFgM:0g—7 T|AFgM 0 MNAteM:0—=7 TEM 0o
rNArg MM 7 FrNArg MM 7
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